IBS, SIBO & Histamine Intolerance

Insights with GI-MAP

Thomas Fabian, PhD CNTP

Housekeeping

For today's live discussion

Chat box to connect with other participants

Q&A to ask the panel questions

Check your email

Recording will be available for a limited time

Poll 1: Which Best Describes you?

- Physician (MD, ND, DO, DC, etc...)
- Physician's Assistant or Nurse Practitioner
- Nutrition professional
- Pharmacist
- Student
- Other

Professional Education with Dr. Kara Fitzgerald:

- Live discussions of real cases at a thriving Functional Medicine clinic
- Teach-Ins with expert colleagues
- A chance to build your Functional Medicine community

Bridge the gap between

theory

and

practice

Join the FREE Teach-In membership

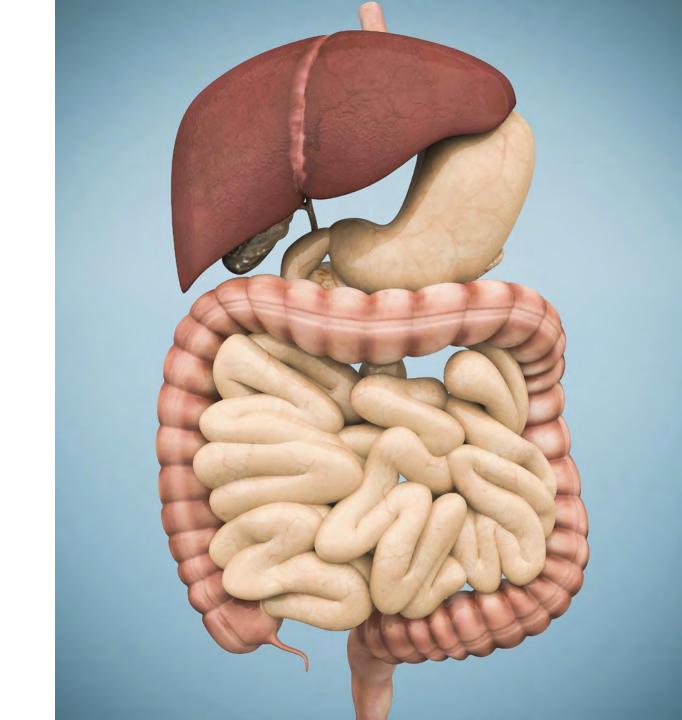
Each month we invite a brilliant peer within the Functional Medicine space to host a webinar, or "Teach-In," for our professional education participants. The FREE Clinic Immersion Membership will grant you access to view a new Teach-In every month.

Join Now

www.drkarafitzgerald.com/drkfeducation/

Key Topics

- Common GI symptoms & conditions involving symptoms that overlap with SIBO & IBS
- Underlying causes & contributors: digestive deficiencies, dysbiosis, & diet
- Key insights from advanced stool testing
- Evolving perspectives and clinical implications

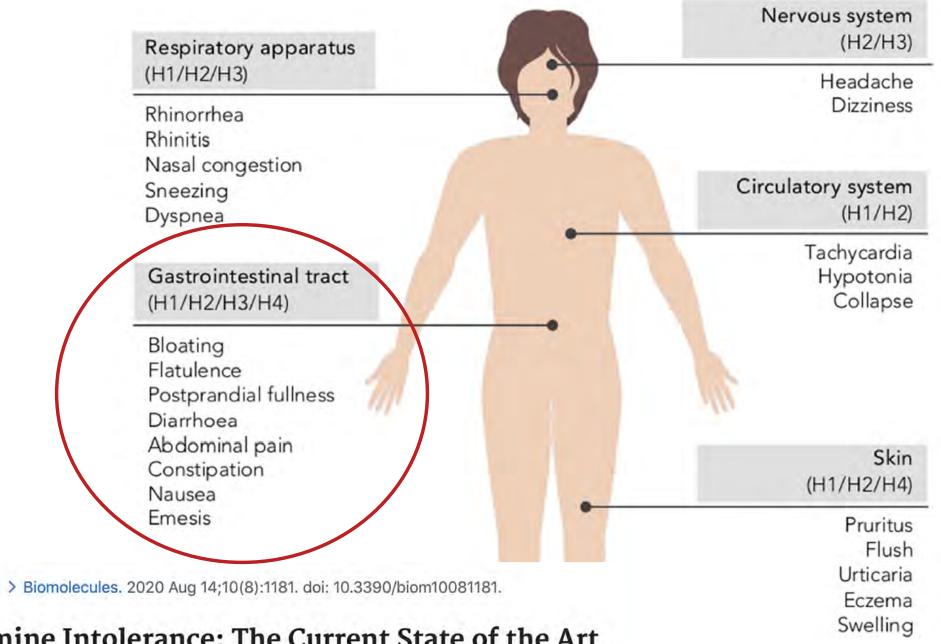

Common GI Symptoms

Bloating / distension

Excessive gas

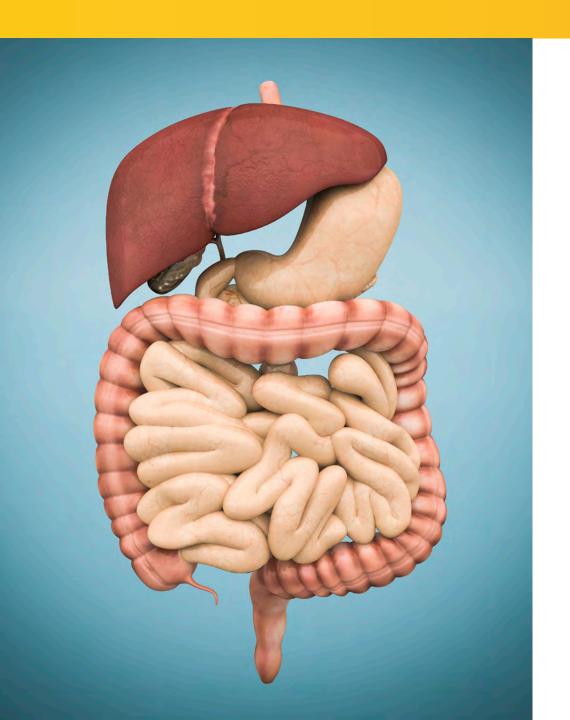
Abdominal discomfort or pain

Diarrhea / constipation



Gastrointestinal motility and absorptive disorders in patients with inflammatory bowel diseases: Prevalence, diagnosis and treatment

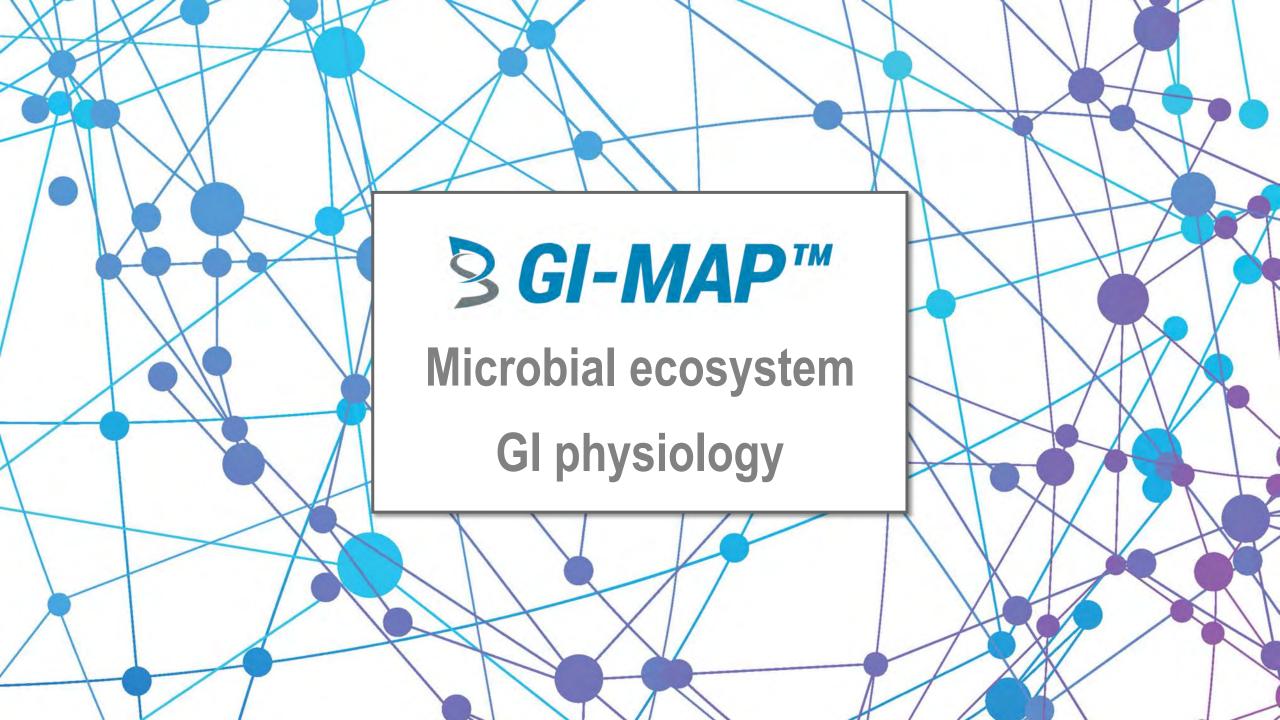
Table 1 Common symptoms of overlapping gastrointestinal disorders in inflammatory bowel disease patients

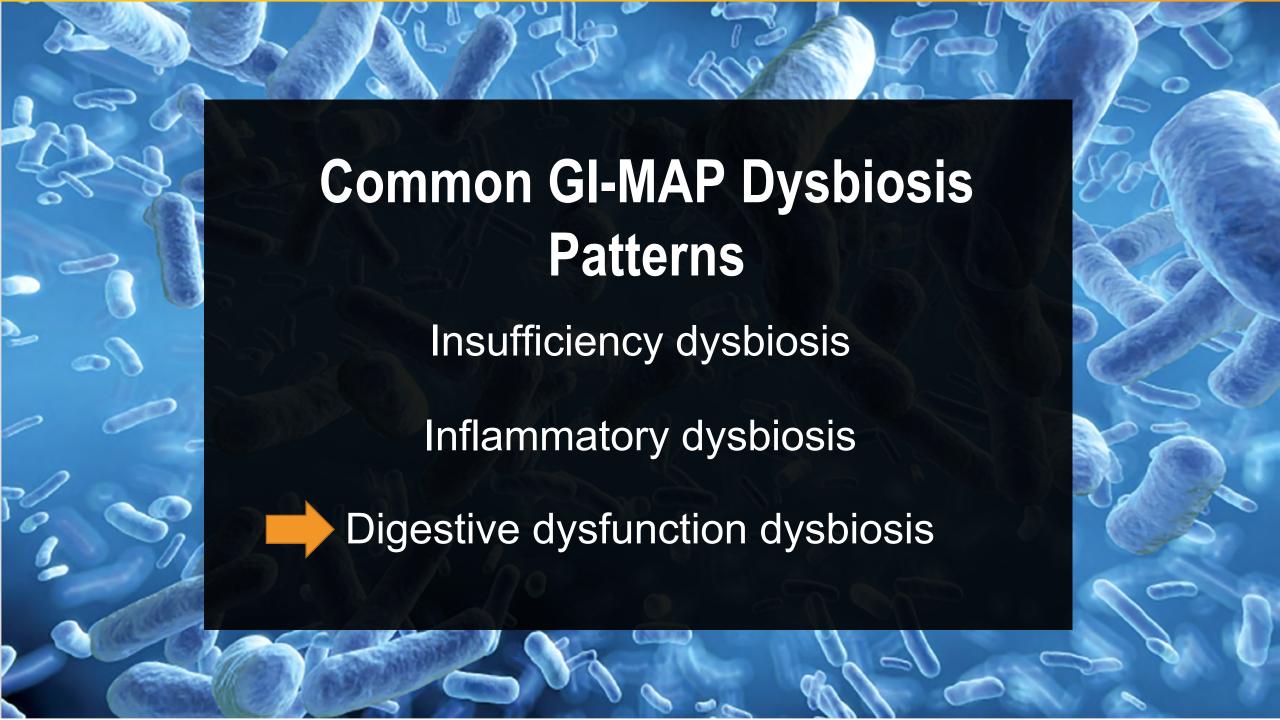

Disease	Symptoms		
Bile-acid malabsorption	Diarrhea, urgency		
Exocrine pancreatic insufficiency	Abdominal discomfort, bloating, diarrhea, greasy stools		
Carbohydrates intolerance	Abdominal discomfort, bloating, diarrhea		
Small intestinal bacterial overgrowth	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, urgency		
Small intestinal fungal overgrowth	Abdominal discomfort, bloating, diarrhea, distention, urgency		
Dyssynergic defecation	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensa of incomplete evacuation, straining, urgency		
Ehlers-Danlos syndromes-hypermobility type	Abdominal pain, bloating, constipation, distention, sensation of incompevacuation, straining, pelvic floor dysfunction		
Mast cell activation syndrome	Abdominal discomfort, bloating, dynamic allergies, diarrhea, distention, sensation of incomplete evacuation, urgency		
Eosinophilic gastroenteritis	Abdominal pain, bloating, diarrhea		
Intra-abdominal adhesions	Abdominal pain, bloating, distention		
Irritable bowel syndrome	Abdominal discomfort, bloating, diarrhea /constipation, distention, sensation of incomplete evacuation, urgency		
Celiac disease	Abdominal discomfort, bloating, diarrhea		

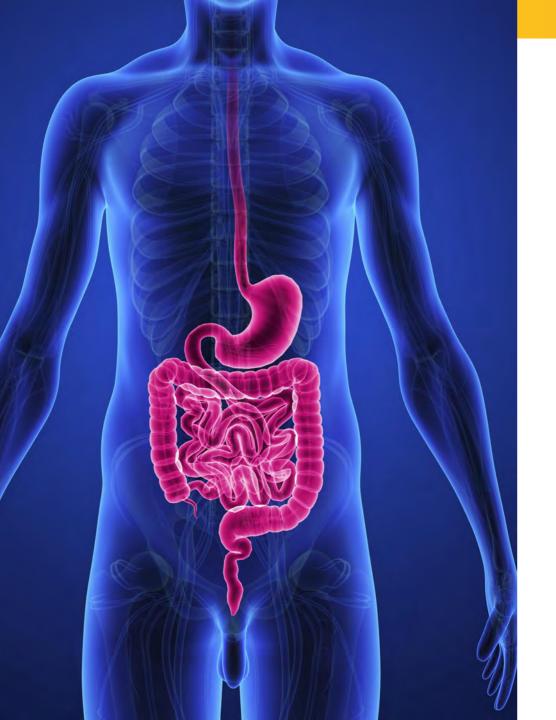
Disease	Symptoms	
Bile-acid malabsorption	Diarrhea, urgency	
Exocrine pancreatic insufficiency	Abdominal discomfort, bloating, diarrhea, greasy stools	
Carbohydrates intolerance	Abdominal discomfort, bloating, diarrhea	
Small intestinal bacterial overgrowth	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, urgency	
Small intestinal fungal overgrowth	Abdominal discomfort, bloating, diarrhea, distention, urgency	
Dyssynergic defecation	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, straining, urgency	
Ehlers-Danlos syndromes-hypermobility type	Abdominal pain, bloating, constipation, distention, sensation of incomplete evacuation, straining, pelvic floor dysfunction	
Mast cell activation syndrome	Abdominal discomfort, bloating, dynamic allergies, diarrhea, distention, sensation of incomplete evacuation, urgency	
Eosinophilic gastroenteritis	Abdominal pain, bloating, diarrhea	
Intra-abdominal adhesions	Abdominal pain, bloating, distention	
Irritable bowel syndrome	Abdominal discomfort, bloating, diarrhea / constipation, distention, sensation of incomplete evacuation, urgency	
Celiac disease	Abdominal discomfort, bloating, diarrhea	
Giardiasis	Abdominal discomfort, bloating, diarrhea	

Histamine Intolerance: The Current State of the Art

Review




Common GI Symptoms: Key Causes & Contributors


Diet

Digestive Dysfunction (+ digestive, immune, nervous system, etc.)

Dysbiosis

Digestive Dysfunction

Bile acid insufficiency

Pancreatic enzyme deficiency / EPI

Hypochlorhydria

Brush border enzyme deficiency (small intestinal dysfunction)

Digestion	Result		Normal
Steatocrit	33	High	<15 %
Elastase-1	187	Low	>200 ug/g
GI Markers	Result		Normal
b-Glucuronidase	1693		<2486 U/mL
Occult Blood - FIT	0		<10 ug/g
Immune Response	Result		Normal
Secretory IgA	81	Low	510 - 2010 ug/g
Anti-gliadin IgA	73		0 - 157 U/L
Inflammation	Result		Normal
Calprotectin	14		<173 ug/g

H. pylori			
	Result		Normal
Helicobacter pylori	6.9e3	High	<1.0e3
Virulence Factor, babA	Negative		Negative
Virulence Factor, cagA	Positive		Negative
Virulence Factor, dupA	Negative		Negative
Virulence Factor, iceA	Negative		Negative
Virulence Factor, oipA	Positive		Negative
Virulence Factor, vacA	Negative		Negative
Virulence Factor, virB	Negative		Negative
Virulence Factor, virD	Negative		Negative

Normal Bacterial Flora

	Result		Normal
Bacteroides fragilis	1.68e10		1.60e9 - 2.50e11
Bifidobacterium spp.	1.99e10		>6.70e7
Enterococcus spp.	6.39e6		1.9e5 - 2.00e8
Escherichia spp.	4.36e6		3.70e6 - 3.80e9
Lactobacillus spp.	9.25e7		8.6e5 - 6.20e8
Clostridia (class)	2.03e8	High	5.00e6 - 5.00e7
Enterobacter spp.	2.73e8	High	1.00e6 - 5.00e7
Akkermansia muciniphila	2.61e5	High	1.00e1 - 5.00e4
Faecalibacterium prausnitzii	1.40e6		1.00e3 - 5.00e8
Phyla Microbiota	Result		Normal
Bacteroidetes	8.66e12	High	8.61e11 - 3.31e12
Firmicutes	4.46e11	High	5.70e10 - 3.04e11
Firmicutes:Bacteroidetes Ratio	0.05		<1.00

Opportunistic Bacteria			
Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	1.37e7	High	<1.50e5
Enterococcus faecalis	1.92e7	High	<1.00e4
Enterococcus faecium	5.39e4	High	<1.00e4
Morganella spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Pseudomonas spp.	4.39e8	High	<1.00e4
Pseudomonas aeruginosa	3.49e5	High	<5.00e2
Staphylococcus spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Staphylococcus aureus	2.06e3	High	<5.00e2
Streptococcus spp.	2.14e3	High	<1.00e3
Methanobacteriaceae (family)	1.55e9		<5.00e9

Potential Autoimmune Triggers	Result		Normal
Citrobacter spp.	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6
Citrobacter freundii	<dl< td=""><td></td><td><5.00e5</td></dl<>		<5.00e5
Klelbsiella spp.	2.95e4	High	<5.00e3
Klebsiella pneumoniae	4.84e5	High	<5.00e4
Mycobacterium tuberculosis (avium)	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Prevotella copri	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7
Proteus spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
Proteus mirabilis	1.02e4	High	<1.00e3

Major Microbiome Products

Short-chain fatty acids

Gases

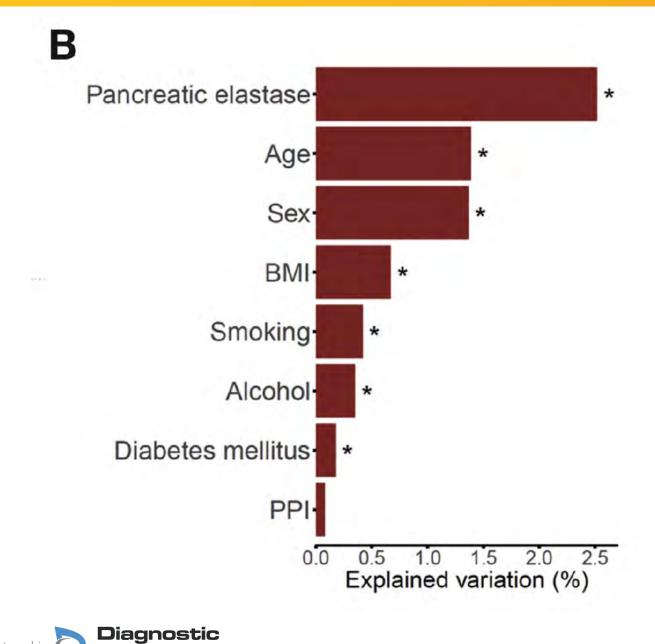
Bile acids & metabolites

Amino acid metabolites

Biogenic amines (histamine, putrescine, tyramine, TMA, etc)

Disease	Symptoms
Bile-acid malabsorption	Diarrhea, urgency
Exocrine pancreatic insufficiency	Abdominal discomfort, bloating, diarrhea, greasy stools
Carbohydrates intolerance	Abdominal discomfort, bloating, diarrhea
Small intestinal bacterial overgrowth	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, urgency
Small intestinal fungal overgrowth	Abdominal discomfort, bloating, diarrhea, distention, urgency
Dyssynergic defecation	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, straining, urgency
Ehlers-Danlos syndromes-hypermobility type	Abdominal pain, bloating, constipation, distention, sensation of incomplete evacuation, straining, pelvic floor dysfunction
Mast cell activation syndrome	Abdominal discomfort, bloating, dynamic allergies, diarrhea, distention, sensation of incomplete evacuation, urgency
Eosinophilic gastroenteritis	Abdominal pain, bloating, diarrhea
Intra-abdominal adhesions	Abdominal pain, bloating, distention
Irritable bowel syndrome	Abdominal discomfort, bloating, diarrhea / constipation, distention, sensation of incomplete evacuation, urgency
Celiac disease	Abdominal discomfort, bloating, diarrhea
Giardiasis	Abdominal discomfort, bloating, diarrhea

Intestinal Health			
Digestion	Result		Normal
Steatocrit	<dl< th=""><th></th><th><15 %</th></dl<>		<15 %
Elastase-1	196	Low	>200 ug/g
GI Markers	Result		Normal
b-Glucuronidase	874		<2486 U/mL
Occult Blood - FIT	1		<10 ug/g
Immune Response	Result		Normal
Secretory IgA	525		510 - 2010 ug/g
Anti-gliadin IgA	22		0 - 157 U/L
Inflammation	Result		Normal
Calprotectin	22		<173 ug/g


DR. KARA FITZGERALD

> Gastroenterology. 2019 Mar;156(4):1010-1015. doi: 10.1053/j.gastro.2018.10.047. Epub 2018 Nov 2.

Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity

"To summarize, this is the first population-based study providing evidence that exocrine pancreatic function is the most important host factor involved in shaping the human intestinal microbiome known so far."

Observational Study > Clin Transl Gastroenterol. 2020 Sep;11(9):e00232. doi: 10.14309/ctg.0000000000000232.

The Gut Microbiome in Patients With Chronic Pancreatitis Is Characterized by Significant Dysbiosis and Overgrowth by Opportunistic Pathogens

"Patients with CP exhibited severely reduced microbial diversity (Shannon diversity index and Simpson diversity number, P < 0.001) with an increased abundance of facultative pathogenic organisms (P < 0.001) such as Enterococcus (q < 0.001), Streptococcus (q < 0.001), and Escherichia/Shigella (q = 0.002)."

> Aliment Pharmacol Ther. 2020 Mar;51(5):505-526. doi: 10.1111/apt.15604. Epub 2020 Jan 28.

Systematic review: the effects of proton pump inhibitors on the microbiome of the digestive tract-evidence from next-generation sequencing studies

- In a review of 19 eligible studies, higher levels of the following were found in stool of PPI users:
 - Streptococcus
 - Enterococcus
 - Staphylococcus
 - Bacillus
 - Lactobacillus
 - Enterobacteriaceae (E. coli, Klebsiella, etc.)

O		
Oppor	C Bac	reria
O P P OI		

Opportunistic Dacteria			
Additional Dysbiotic/Overgrowth Bacte	ria Result		Normal
Bacillus spp.	1.37e7	High	<1.50e5
Enterococcus faecalis	1.92e7	High	<1.00e4
Enterococcus faecium	5.39e4	High	<1.00e4
Morganella spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Pseudomonas spp.	4.39e8	High	<1.00e4
Pseudomonas aeruginosa	3.49e5	High	<5.00e2
Staphylococcus spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Staphylococcus aureus	2.06e3	High	<5.00e2
Streptococcus spp.	2.14e3	High	<1.00e3
Methanobacteriaceae (family)	1.55e9		<5.00e9

Potential Autoimmune Triggers	Result		Normal
Citrobacter spp.	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6
Citrobacter freundii	<dl< td=""><td></td><td><5.00e5</td></dl<>		<5.00e5
Klelbsiella spp.	2.95e4	High	<5.00e3
Klebsiella pneumoniae	4.84e5	High	<5.00e4
Mycobacterium tuberculosis (avium)	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Prevotella copri	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7
Proteus spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
Proteus mirabilis	1.02e4	High	<1.00e3

Normal Bacterial Flora

	Result		Normal
Bacteroides fragilis	coccus spp. 1.99e10 6.39e6		1.60e9 - 2.50e11 >6.70e7 1.9e5 - 2.00e8 3.70e6 - 3.80e9
Bifidobacterium spp.			
Enterococcus spp.			
Escherichia spp.			
Lactobacillus spp.	9.25e7		8.6e5 - 6.20e8
Clostridia (class)	2.03e8	High	5.00e6 - 5.00e7
Enterobacter spp.	2.73e8	High	1.00e6 - 5.00e7
Akkermansia muciniphila	2.61e5	High	1.00e1 - 5.00e4
Faecalibacterium prausnitzii	1.40e6		1.00e3 - 5.00e8
Phyla Microbiota	Result		Normal
Bacteroidetes	8.66e12	High	8.61e11 - 3.31e12
Firmicutes	4.46e11	High	5.70e10 - 3.04e11
Firmicutes:Bacteroidetes Ratio	0.05		<1.00

"Most patients chronically infected with H. pylori manifest a pan-gastritis with hypochlorhydria."

<u>Curr Top Microbiol Immunol.</u> 2017;400:227-252. doi: 10.1007/978-3-319-50520-6_10.

Helicobacter pylori-Induced Changes in Gastric Acid Secretion and Upper Gastrointestinal Disease.

H. pylori			
	Result		Normal
Helicobacter pylori	6.9e3	High	<1.0e3
Virulence Factor, babA	Negative		Negative
Virulence Factor, cagA	Positive		Negative
Virulence Factor, dupA	Negative		Negative
Virulence Factor, iceA	Negative		Negative
Virulence Factor, oipA	Positive		Negative
Virulence Factor, vacA	Negative		Negative
Virulence Factor, virB	Negative		Negative
Virulence Factor, virD	Negative		Negative

Disease	Symptoms	
Bile-acid malabsorption	Diarrhea, urgency	
Exocrine pancreatic insufficiency	Abdominal discomfort, bloating, diarrhea, greasy stools	
Carbohydrates intolerance	Abdominal discomfort, bloating, diarrhea	
Small intestinal bacterial overgrowth	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, urgency	
Small intestinal fungal overgrowth	Abdominal discomfort, bloating, diarrhea, distention, urgency	
Dyssynergic defecation	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, straining, urgency	
Ehlers-Danlos syndromes-hypermobility type	Abdominal pain, bloating, constipation, distention, sensation of incomplete evacuation, straining, pelvic floor dysfunction	
Mast cell activation syndrome	Abdominal discomfort, bloating, dynamic allergies, diarrhea, distention, sensation of incomplete evacuation, urgency	
Eosinophilic gastroenteritis	Abdominal pain, bloating, diarrhea	
Intra-abdominal adhesions	Abdominal pain, bloating, distention	
Irritable bowel syndrome	Abdominal discomfort, bloating, diarrhea / constipation, distention, sensation of incomplete evacuation, urgency	
Celiac disease	Abdominal discomfort, bloating, diarrhea	
Giardiasis	Abdominal discomfort, bloating, diarrhea	

REVIEWS

Review

> Nat Rev Gastroenterol Hepatol. 2019 Dec;16(12):733-747.

Intestinal gases: influence on gut disorders and the role of dietary manipulations

Kourosh Kalantar-Zadeh 1, Kyle J. Berean^{1,2,3}, Rebecca E. Burgell⁴, Jane G. Muir⁴ and Peter R. Gibson 1, **

Abstract | The inner workings of the intestines, in which the body and microbiome intersect to influence gut function and systemic health, remain elusive. Carbon dioxide, hydrogen, methane and hydrogen sulfide, as well as a variety of trace gases, are generated by the chemical interactions and microbiota within the gut. Profiling of these intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health. Indeed, different tools for measuring these intestinal gases have been developed, including newly developed gas-sensing capsule technology. Gases can, according to their type, concentration and volume, induce or relieve abdominal symptoms, and might also

Dietary disaccharides (such as lactose and sucrose) and oligosaccharides released from the amylase-mediated digestion of starch require digestion by brush border enzymes prior to absorption. Thus, their absorption fails when the activity of these enzymes is low, as occurs in lactase or sucrase-isomaltase deficiency¹³². Other oligosaccharides (such as fructo-oligosaccharides and galacto-oligosaccharides) and non-starch polysaccharides that are not digested due to the lack of suitable hydrolases in the small intestine are, therefore, not absorbed at all¹³³.

Unabsorbed carbohydrates reach the bacteria-rich colon, where they can be fermented. In general, carbohydrates of short chain lengths are fermented more rapidly than those with a long chain length (that is, those with a degree of polymerization (DP) of >10), yielding larger quantities of gas over a shorter period of time^{99,134}. Non-

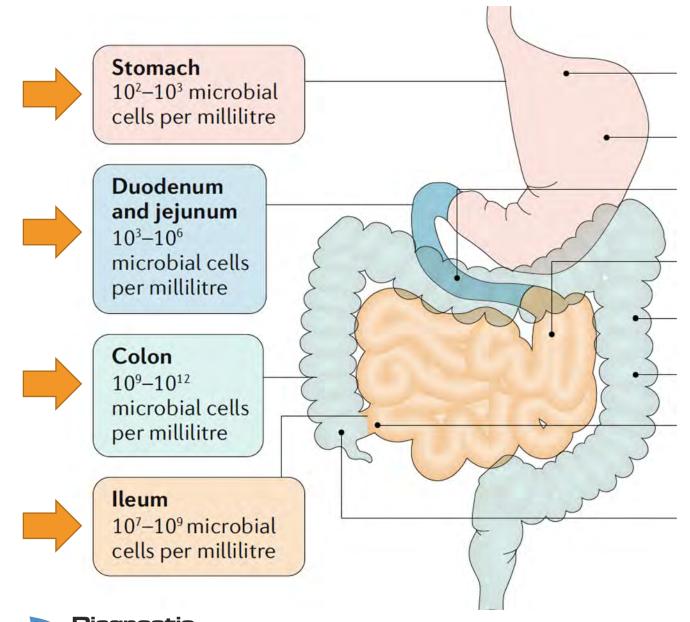
> Dig Dis Sci. 2020 Feb;65(2):534-540. doi: 10.1007/s10620-019-05780-7. Epub 2019 Sep 6.

Sucrase-Isomaltase Deficiency as a Potential Masquerader in Irritable Bowel Syndrome

"SID [sucrase-isomaltase deficiency] was found in 35% of patients with presumed IBS-D/M and should be considered in the differential diagnosis of patients presenting with abdominal pain, diarrhea, or bloating."

Impact of Diet on Symptoms of the Irritable Bowel **Syndrome**

"FODMAPs, being poorly absorbed, enter the colon, where they are rapidly fermented. This can be readily visualised by MRI, which shows how the osmotically active fructose distends the small bowel with fluid and subsequently the colon, where it produces gas along with a rise in breath hydrogen."


> Gut Microbes. 2016 May 3;7(3):235-45. doi: 10.1080/19490976.2016.1182288.

H2 metabolism is widespread and diverse among human colonic microbes

This study concluded that: "the predominant mechanism of H₂ evolution [production] in this ecosystem is through fermentative processes mediated by *Bacteroidetes and Clostridial members of the Firmicutes*."

Normal Bacterial Flora			
	Result		Normal
Bacteroides fragilis	1.68e10	1.68e10	
Bifidobacterium spp.	1.99e10		>6.70e7
Enterococcus spp.	6.39e6		1.9e5 - 2.00e8
Escherichia spp.	4.36e6		3.70e6 - 3.80e9
Lactobacillus spp.	9.25e7		8.6e5 - 6.20e8
Clostridia (class)	2.03e8	High	5.00e6 - 5.00e7
Enterobacter spp.	2.73e8	High	1.00e6 - 5.00e7
Akkermansia muciniphila	2.61e5	High	1.00e1 - 5.00e4
Faecalibacterium prausnitzii	1.40e6		1.00e3 - 5.00e8
Phyla Microbiota	Result		Normal
Bacteroidetes	8.66e12	High	8.61e11 - 3.31e12
Firmicutes	4.46e11	High	5.70e10 - 3.04e11
Firmicutes:Bacteroidetes Ratio	0.05		<1.00

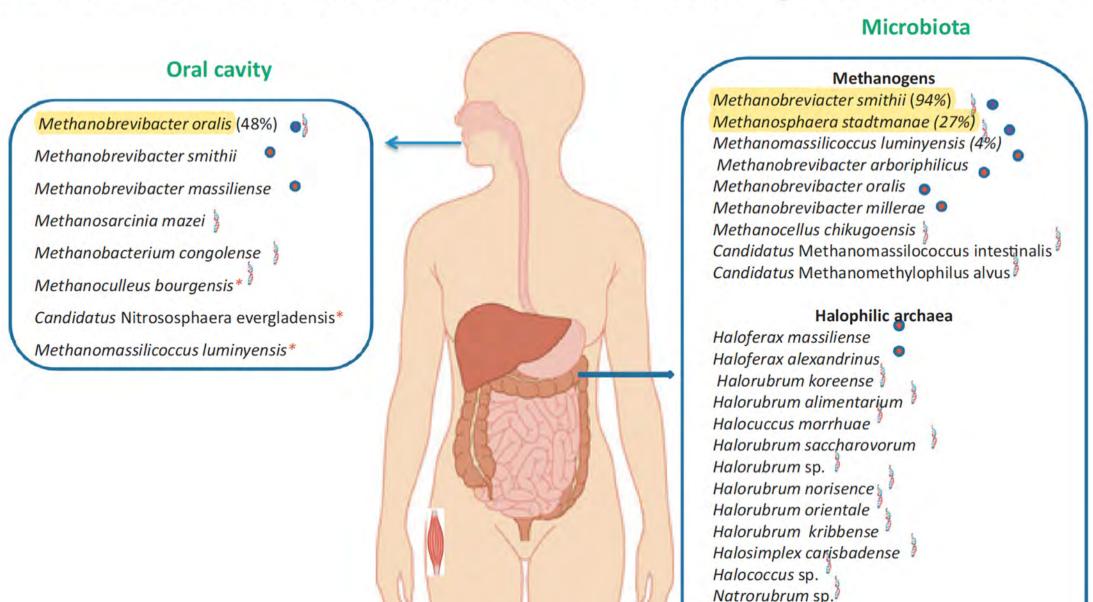
Oppo	rtun	istic	Bact	eria

Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	6.47e4		<1.50e5
Enterococcus faecalis	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Enterococcus faecium	1.13e3		<1.00e4
Morganella spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Pseudomonas spp.	2.45e5	High	<1.00e4
Pseudomonas aeruginosa	3.00e3	High	<5.00e2
Staphylococcus spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Staphylococcus aureus	2.52e3	High	<5.00e2
Streptococcus spp.	2.17e4	High	<1.00e3
Methanobacteriaceae (family)	5.47e9	High	<5.00e9

In the human gastrointestinal tract, *Methanobrevibacter* smithii is the major methanogen responsible for the conversion of CO₂ and H₂ into CH₄ (REF. 66). The detection of CH4 in the breath has led to classification of individuals as 'CH₄ producers' or 'CH₄ non-producers' (REF.⁶⁷). However, as methanogens are still found in the faeces of many CH₄ non-producers⁶⁸, such a classification seems to be artificial, and the detection of CH₄ is probably related to whether sufficient levels are produced for detection in the breath. The existence of methanogens at concentrations of $>1 \times 10^8$ colony-forming units (CFU) per gram of stool has been suggested to be required to result in detectable levels of CH₄ in the breath^{69,70}.

Oppo	rtun	istic	Bact	eria

Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	6.47e4		<1.50e5
Enterococcus faecalis	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Enterococcus faecium	1.13e3		<1.00e4
Morganella spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Pseudomonas spp.	2.45e5	High	<1.00e4
Pseudomonas aeruginosa	3.00e3	High	<5.00e2
Staphylococcus spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Staphylococcus aureus	2.52e3	High	<5.00e2
Streptococcus spp.	2.17e4	High	<1.00e3
Methanobacteriaceae (family)	5.47e9	High	<5.00e9



Normal Bacterial Flora				
	Result		Normal	
Bacteroides fragilis	1.68e10		1.60e9 - 2.50e11	
Bifidobacterium spp.	1.99e10		>6.70e7	
Enterococcus spp.	6.39e6		1.9e5 - 2.00e8	
Escherichia spp.	4.36e6		3.70e6 - 3.80e9	
Lactobacillus spp.	9.25e7		8.6e5 - 6.20e8	
Clostridia (class)	2.03e8	High	5.00e6 - 5.00e7	
Enterobacter spp.	2.73e8	High	1.00e6 - 5.00e7	
Akkermansia muciniphila	2.61e5	High	1.00e1 - 5.00e4	
Faecalibacterium prausnitzii	1.40e6		1.00e3 - 5.00e8	
Phyla Microbiota	Result		Normal	
Bacteroidetes	8.66e12	High	8.61e11 - 3.31e12	
Firmicutes	4.46e11	High	5.70e10 - 3.04e11	
Firmicutes:Bacteroidetes Ratio	0.05		<1.00	

Human Microbiome Journal 3 (2017) 1-8

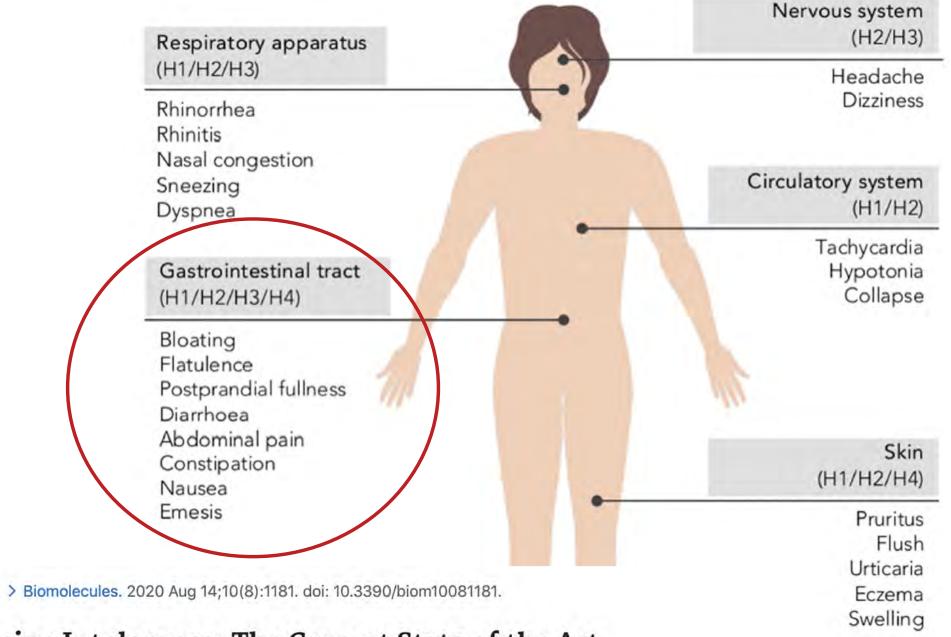
Archaea: Essential inhabitants of the human digestive microbiota

> Sci Rep. 2021 Jan 8;11(1):26. doi: 10.1038/s41598-020-79554-x.

Hydrogen-methane breath testing results influenced by oral hygiene

"Conclusion: Baseline elevations of expired hydrogen or methane seen in breath testing may be due to the oral microbiota, including methanogens. Variations in gas production such as those seen in this study has significant implications on test interpretation and subsequently on diagnosis."

Histamine & Histamine Intolerance


- Sensitivity to dietary histamine due to impaired histamine breakdown (intestinal diamine oxidase)
- Gut microbes & immune responses (mast cells) also contribute to histamine levels
- Symptom overlap with other common GI conditions

Brush Border Deficiencies

- Diamine oxidase (DAO) >> Histamine intolerance
 - Disaccharidases >> carbohydrate intolerance
 - Peptidases >> allergens, protein fermentation
 - Intestinal alkaline phosphatase >> LPS
 - Transporters for absorption

Histamine Intolerance: The Current State of the Art

Review

Review > Biomolecules. 2020 Aug 14;10(8):1181. doi: 10.3390/biom10081181.

Histamine Intolerance: The Current State of the Art

"Specifically, the Enterobacteriaceae species Hafnai aluei, Morganella morganii and Klebsiella pneumoniae have been identified as some of the most prolific histamine-forming bacteria ... "

Immune regulation by histamine and histaminesecreting bacteria

Histamine-producing Proteobacteria:

- Morganella morganii
- Escherichia coli
- Proteus: P. vulgaris & P. mirabilis
- Enterobacter aerogenes
- Citrobacter freundii
- Pseudomonas fluorescens

Normal Bacterial Flora

	Result		Normal
Bacteroides fragilis	1.68e10		1.60e9 - 2.50e11
Bifidobacterium spp.	1.99e10		>6.70e7
Enterococcus spp.	6.39e6		1.9e5 - 2.00e8
Escherichia spp.	4.36e6		3.70e6 - 3.80e9
Lactobacillus spp.	9.25e7		8.6e5 - 6.20e8
Clostridia (class)	2.03e8	High	5.00e6 - 5.00e7
Enterobacter spp.	2.73e8	High	1.00e6 - 5.00e7
Akkermansia muciniphila	2.61e5	High	1.00e1 - 5.00e4
Faecalibacterium prausnitzii	1.40e6		1.00e3 - 5.00e8
Phyla Microbiota	Result		Normal
Bacteroidetes	8.66e12	High	8.61e11 - 3.31e12
Firmicutes	4.46e11	High	5.70e10 - 3.04e11
Firmicutes:Bacteroidetes Ratio	0.05		<1.00

Opportunistic Bacteria			
Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	5.86e5	High	<1.50e5
Enterococcus faecalis	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Enterococcus faecium	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Morganella spp.	1.69e5	High	<1.00e3
Pseudomonas spp.	3.35e6	High	<1.00e4
Pseudomonas aeruginosa	4.71e3	High	<5.00e2
Staphylococcus spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Staphylococcus aureus	<dl< td=""><td></td><td><5.00e2</td></dl<>		<5.00e2
Streptococcus spp.	3.22e3	High	<1.00e3
Methanobacteriaceae (family)	3.02e8		<5.00e9

Potential Autoimmune Triggers	Result		Normal
Citrobacter spp.	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6
Citrobacter freundii	<dl< td=""><td></td><td><5.00e5</td></dl<>		<5.00e5
Klelbsiella spp.	2.95e4	High	<5.00e3
Klebsiella pneumoniae	4.84e5	High	<5.00e4
Mycobacterium tuberculosis (avium)	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Prevotella copri	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7
Proteus spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
Proteus mirabilis	1.02e4	High	<1.00e3

> Crit Rev Food Sci Nutr. 2020 Jul 9;1-8. doi: 10.1080/10408398.2020.1791049.

Considering histamine in functional gastrointestinal disorders

"There is an imprecise clinical overlap between irritable bowel syndrome (IBS) and other IBS-like disorders. ... Generally, there is a lack of specificity of symptoms, therefore symptoms alone or symptom complexes are hardly, if ever, diagnostic. It is suspected that various pathogenetic mechanisms may be responsible for IBS. However, 80% of IBS patients identified food, including histamine, as a possible trigger for their symptoms."

> Can J Gastroenterol Hepatol. 2016;2016:4893501. doi: 10.1155/2016/4893501. Epub 2016 Nov 30.

Concomitant Prevalence of Low Serum Diamine Oxidase Activity and Carbohydrate Malabsorption

"Interestingly, 89 out of 241 (36.9%) individuals with carbohydrate malabsorption were also diagnosed with HI."

"Mucosal damage in the small intestine caused by GI conditions ...may reduce DAO and lactase activity, respectively."

Box 2 | Causes of small intestinal villous atrophy

Immune disorders

- Coeliac disease
- Autoimmune enteropathy
- Inflammatory bowel disease

Immune deficiencies

Common variable immunodeficiency

Infections

- Helicobacter pylori
- Giardiasis
- Cryptosporidiosis
- HIV
- Viral gastroenteritis

Nutritional deficiencies

- Malnutrition
- Vitamin B₁₂, folic acid or zinc deficiencies

Malignancies

Enteropathy-associated T cell lymphoma

Other

- Peptic duodenitis
- Eosinophilic gastroenteritis
- Olmesartan medication and other angiotensin II blockers
- NSAIDs
- Radiation and chemotherapy
- Allergy to cow's milk
- Small intestine bacterial overgrowth

Data are from REFS^{104,219,220}.

Nat Rev Dis Primers. 2019 Jan 10;5(1):4. doi: 10.1038/s41572-019-0059-2.

Coeliac disease.

Brush Border Deficiencies

- Diamine oxidase (DAO) >> Histamine intolerance
- Disaccharidases >> carbohydrate intolerance
 - Peptidases >> allergens, protein fermentation
 - Intestinal alkaline phosphatase >> LPS
 - Transporters for absorption

FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial

- Thirty-seven patients completed the 3-week diet (19 low-FODMAP, 18 high-FODMAP).
- Lactulose breath tests showed a minor decrease in H2
 production in the low FODMAP compared with the high FODMAP
 group.
- Histamine, a measure of immune activation, was <u>reduced</u>
 <u>eightfold</u> in the low FODMAP group (p<0.05)

Summary: Key Topics

- Common GI symptoms & conditions involving symptoms that overlap with SIBO & IBS
- Underlying causes & contributors: digestive deficiencies, dysbiosis, & diet
- Key insights from advanced stool testing
- Evolving perspectives and clinical implications

NATURE COMMUNICATIONS | (2019)10:2012 |

ARTICLE

https://doi.org/10.1038/s41467-019-09964-7

OPEN

Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders

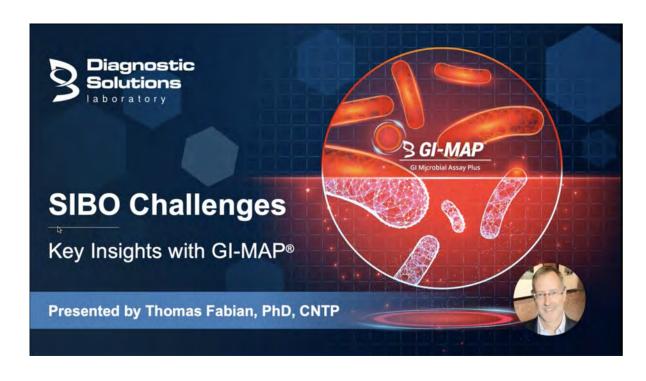
George B. Saffouri^{1,14}, Robin R. Shields-Cutler^{2,3,14}, Jun Chen⁴, Yi Yang⁵, Heather R. Lekatz¹, Vanessa L. Hale⁶, Janice M. Cho⁷, Eric J. Battaglioli¹, Yogesh Bhattarai¹, Kevin J. Thompson⁴, Krishna K. Kalari⁴, Gaurav Behera¹, Jonathan C. Berry⁸, Stephanie A. Peters¹, Robin Patel⁸, Audrey N. Schuetz⁸, Jeremiah J. Faith⁹, Michael Camilleri^{1,10}, Justin L. Sonnenburg¹¹, Gianrico Farrugia¹², Jonathan R. Swann ⁵, Madhusudan Grover ^{1,10}, Dan Knights^{2,13} & Purna C. Kashyap ^{1,10}

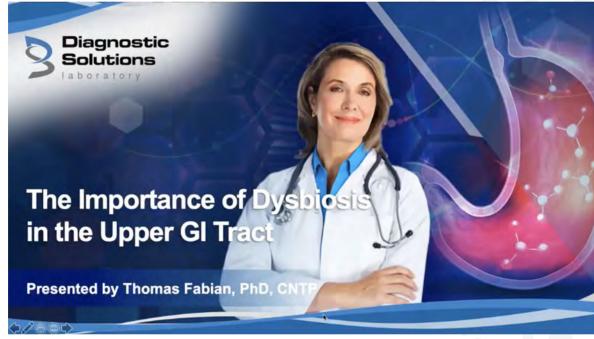
Small intestinal bacterial overgrowth (SIBO) has been implicated in symptoms associated with functional gastrointestinal disorders (FGIDs), though mechanisms remain poorly defined and treatment involves non-specific antibiotics. Here we show that SIBO based on duodenal aspirate culture reflects an overgrowth of anaerobes, does not correspond with patient

Upper GI / Small Intestine Dysbiosis

- H. pylori
- Giardia
 - Cryptosporidium
 - Enterotoxigenic E. coli
 - Vibrio cholerae
 - Yersinia enterocolitica
 - Norovirus
 - Ancyclostoma duodenale
 - Necator americanus

Lactobacillus

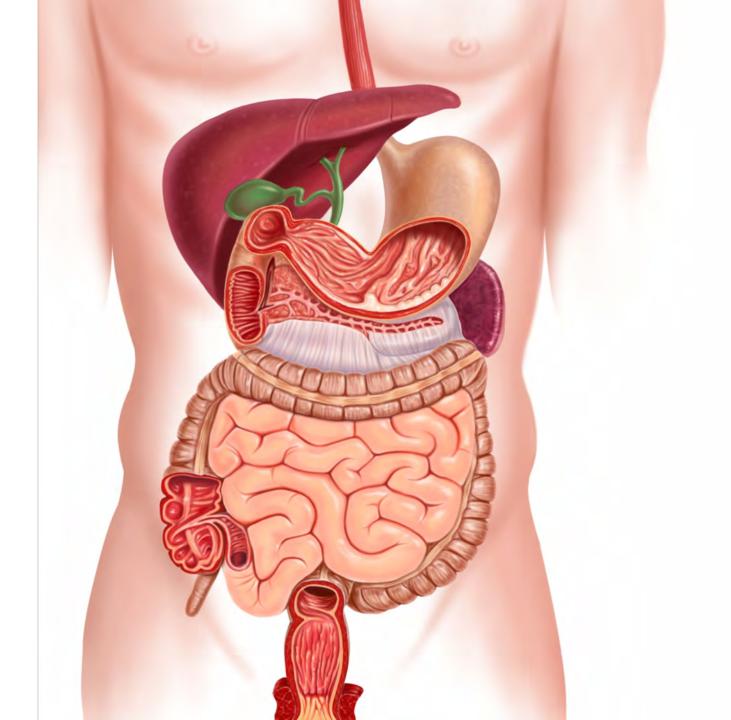


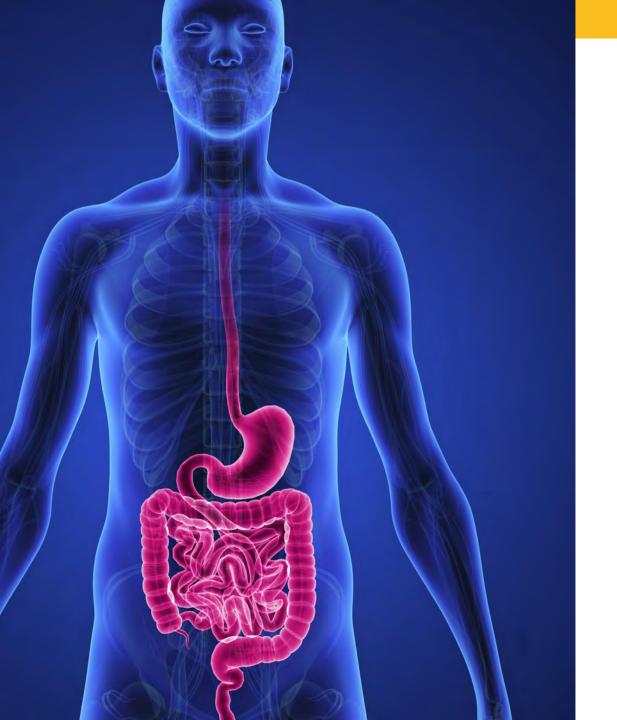


Citrobacter

- Enterobacter (+ colon)
- Fusobacterium
- E. coli (+ colon)

Integrative Perspective


Oral cavity


Stomach

Small intestine

Large intestine

Systemic

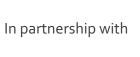
Causes & Contributors: Implications for Treatment

Diet

Dysbiosis

Digestive Dysfunction

(+ immune, nervous system, etc.)



Bonus! PDF Companion Guide

This exclusive resource for practitioners guides on common functional groups of microbes on GI-MAP that are related to common GI symptoms, including:

- ✓ Bacteria associated with hypochlorhydria and low pancreatic enzymes
- ✓ Histamine-producing bacteria
- ✓ Gas-producing microbes:
 - > Hydrogen
 - Methane
 - Hydrogen sulfide

Thank you!

Additional resources:

DiagnosticSolutionsLab.com

