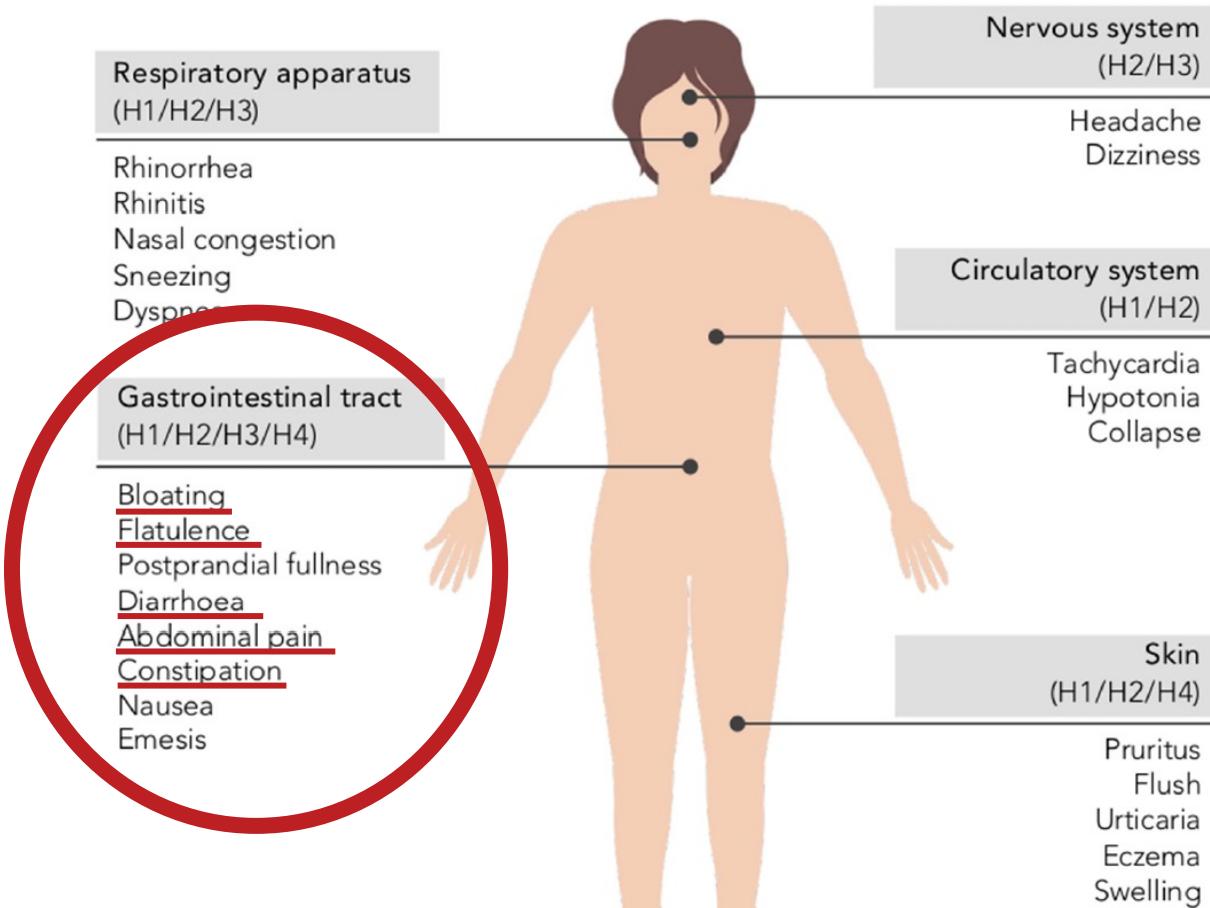


GI-MAP® *Advanced Practice Series*

Assessing Patients with IBS & SIBO Symptoms

Presented by Thomas Fabian, PhD


Irritable Bowel Syndrome

- Diagnosis based on symptoms (Rome IV criteria): frequent abdominal pain, altered motility (IBS-C, IBS-D, IBS-M, IBS-U)
- Bloating & distension are common (90% of IBS-C, lower in IBS-D) but not included in Rome IV criteria
- No widely-accepted test(s) for diagnosis
- **Emerging paradigm:** testing, diagnosis, & treatment will be guided by evidence-based pathophysiological mechanisms (especially **microbiome & neuro-immune interactions**)

Table 1 Common symptoms of overlapping gastrointestinal disorders in inflammatory bowel disease patients

Disease	Symptoms
Bile-acid malabsorption	Diarrhea, urgency
Exocrine pancreatic insufficiency	Abdominal discomfort, bloating, diarrhea, greasy stools
Carbohydrates intolerance	Abdominal discomfort, bloating, diarrhea
Small intestinal bacterial overgrowth	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, urgency
Small intestinal fungal overgrowth	Abdominal discomfort, bloating, diarrhea, distention, urgency
Dyssynergic defecation	Abdominal discomfort, bloating, constipation, diarrhea, distention, sensation of incomplete evacuation, straining, urgency
Ehlers-Danlos syndromes-hypermobility type	Abdominal pain, bloating, constipation, distention, sensation of incomplete evacuation, straining, pelvic floor dysfunction
Mast cell activation syndrome	Abdominal discomfort, bloating, dynamic allergies, diarrhea, distention, sensation of incomplete evacuation, urgency
Eosinophilic gastroenteritis	Abdominal pain, bloating, diarrhea
Intra-abdominal adhesions	Abdominal pain, bloating, distention
Irritable bowel syndrome	Abdominal discomfort, bloating, diarrhea / constipation, distention, sensation of incomplete evacuation, urgency
Celiac disease	Abdominal discomfort, bloating, diarrhea
Giardiasis	Abdominal discomfort, bloating, diarrhea

Histamine Intolerance: The Current State of the Art

Original research

Irritable bowel syndrome: treatment based on pathophysiology and biomarkers

Michael Camilleri ¹ Guy Boeckxstaens ²

¹Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA

²Center of Intestinal Neuroimmune Interaction, Division of Gastroenterology, Translational Research Center for GI Disorders (TARGID), Leuven University, Leuven, Belgium

Correspondence to

Dr Michael Camilleri,
Gastroenterology, Mayo Clinic,
Rochester, Minnesota, USA;
camilleri.michael@mayo.edu

Received 23 August 2022

Accepted 16 October 2022

ABSTRACT

Objective To appraise the evidence that pathophysiological mechanisms and individualised treatment directed at those mechanisms provide an alternative approach to the treatment of patients with irritable bowel syndrome (IBS).

Design A PubMed-based literature review of mechanisms and treatment of IBS was conducted independently by the two authors, and any differences of perspective or interpretation of the literature were resolved following discussion.

Results The availability of several noninvasive clinical tests can appraise the mechanisms responsible for symptom generation in IBS, including rectal evacuation disorders, abnormal transit, visceral hypersensitivity or hypervigilance, bile acid diarrhoea, sugar intolerances, barrier dysfunction, the microbiome, immune activation and chemicals released by the latter mechanism. The basic molecular mechanisms contributing to these pathophysiolgies are increasingly recognised, offering opportunities to intervene with medications directed specifically to food components, receptors and potentially the microbiome. Although the evidence supporting

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ The current guidelines suggest algorithms regarding the sequence of choice of medications based on predominant symptoms particularly bowel dysfunction in patients with irritable bowel syndrome (IBS).

WHAT THIS STUDY ADDS

⇒ This review documents the evidence that pathophysiological mechanisms and individualised treatment directed at those mechanisms provide an alternative approach to the management of patients with IBS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ This review focuses the attention of researchers to the translational and basic molecular mechanisms that deserve further studies to enhance the diagnosis and management of IBS, and it informs policy makers and those involved in developing guidelines for clinical practice regarding the management of IBS.

*“The widespread availability of noninvasive clinical tests that can appraise the mechanisms responsible for symptom generation in IBS provides the opportunity to advance the practice from treatment based on symptoms to **individualisation of treatment guided by pathophysiology & clinically identified biomarkers.**”*

carmlien.michael@mayo.edu

Received 23 August 2022

Accepted 16 October 2022

barrier dysfunction, the microbiome, immune activation and chemicals released by the latter mechanism. The basic molecular mechanisms contributing to these pathophysioses are increasingly recognised, offering opportunities to intervene with medications directed specifically to food components, receptors and potentially the microbiome. Although the evidence supporting

→ This review focuses the attention of researchers to the translational and basic molecular mechanisms that deserve further studies to enhance the diagnosis and management of IBS, and it informs policy makers and those involved in developing guidelines for clinical practice according to the international IBS

Recent advances in clinical practice

Understanding neuroimmune interactions in disorders of gut–brain interaction: from functional to immune-mediated disorders

Tim Vanuytsel,^{1,2} Premysl Bercik,³ Guy Boeckxstaens ^{1,2}

¹Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium

²Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium

³Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada

Correspondence to
Professor Guy Boeckxstaens,
Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta),

ABSTRACT

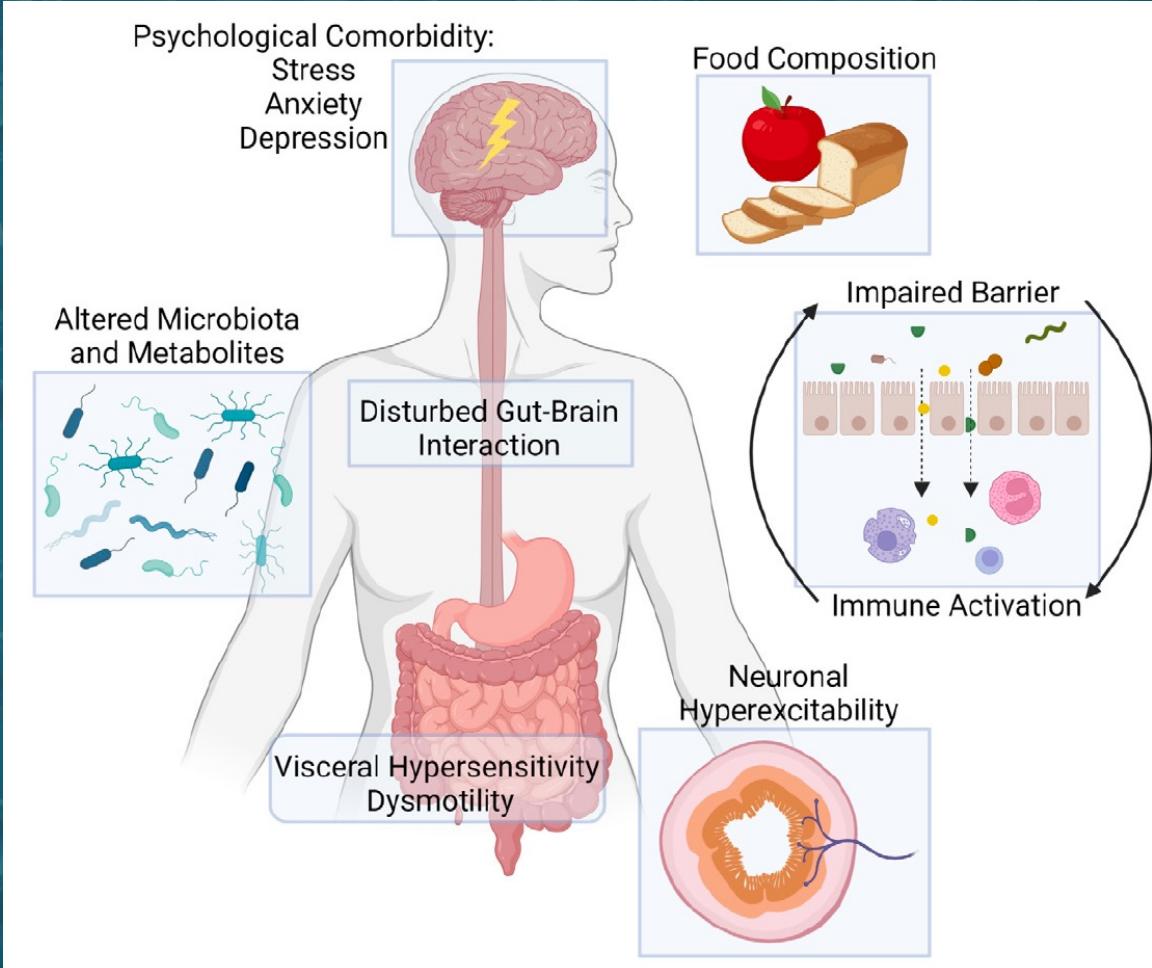
Functional gastrointestinal disorders—recently renamed into disorders of gut–brain interaction—such as irritable bowel syndrome and functional dyspepsia are highly prevalent conditions with bothersome abdominal symptoms in the absence of structural abnormalities. While traditionally considered as motility disorders or even psychosomatic conditions, our understanding of the pathophysiology has evolved significantly over the last two decades. Initial observations of subtle mucosal infiltration with immune cells, especially mast cells and eosinophils, are since recently being backed up by mechanistic evidence demonstrating increased release of nociceptive mediators by immune cells and the intestinal epithelium. These mediators can activate sensitised neurons leading to visceral hypersensitivity with bothersome symptoms. The interaction between immune activation and an impaired barrier function of the gut is likely to be bidirectional, along with alterations in the

KEY MESSAGES

- ⇒ Functional gastrointestinal disorders—or disorders of gut–brain interaction—are highly prevalent conditions with limited effective treatment options.
- ⇒ Mucosal sensory neurons in irritable bowel syndrome patients are sensitised through an increased release of nociceptive mediators from immune cells and the epithelium.
- ⇒ Subtle infiltration and activation of mast cells and eosinophils, both a source of nociceptive mediators, have been demonstrated in irritable bowel syndrome and functional dyspepsia.
- ⇒ Psychological stress, food components, microbiota and an impaired barrier function may all contribute to immune activation in functional gastrointestinal disorders.
- ⇒ Novel treatment options, specifically targeting

ABSTRACT

Functional gastrointestinal disorders—recently renamed into disorders of gut–brain interaction—such as irritable bowel syndrome and functional dyspepsia are highly prevalent conditions with bothersome abdominal symptoms in the absence of structural abnormalities. While traditionally considered as motility disorders or even psychosomatic conditions, our understanding of the pathophysiology has evolved significantly over the last two decades. Initial observations of subtle mucosal infiltration with immune cells, especially mast cells and eosinophils, are since recently being backed up by mechanistic evidence demonstrating increased release of nociceptive mediators by immune cells and the intestinal epithelium. These mediators can activate sensitised neurons leading to visceral hypersensitivity with bothersome symptoms. The interaction between immune activation and an impaired barrier function of the gut is most likely a bidirectional one with alterations in the microbiota, psychological stress and food components as upstream players in the pathophysiology. Only few


¹Translational Research for Gastrointestinal Disorders (TARGID), Department of Chronic Disease and Metabolism (CDM), University of Leuven, Leuven, Belgium

²Gastroenterology and Hepatology, University of Leuven, Leuven, Belgium

³Faculty of Health and Applied Medical Sciences, Farncombe Family Health Research Institute, McMaster University, Hamilton, Ontario, Canada

Correspondence:
Professor Guy Boelaert
Translational Research for Gastrointestinal Disorders (TARGID), Department of Chronic Disease and Metabolism (CDM), University of Leuven, Leuven, Belgium

Figure 2 Pathophysiological mechanisms in disorders of gut–brain interaction.

Intestinal gases: influence on gut disorders and the role of dietary manipulations

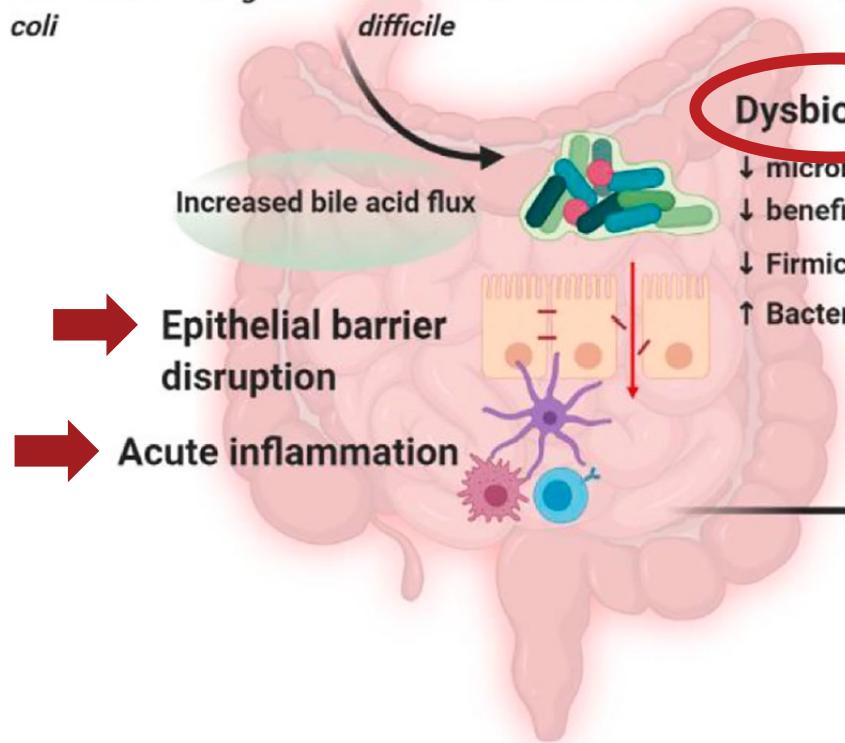
“Abdominal **bloating** with or without abdominal pain is, in general, **not associated with excessive gas production**, but rather is a manifestation of **altered visceral sensitivity**.”

“The administration of lactulose (an undigestible disaccharide) has been associated with **colonic gas production** (as shown by a marked increase in H_2 levels in the breath) and abdominal **distension in healthy individuals and patients with IBS**, but **only patients with IBS experience symptoms of pain and bloating**.”

Escherichia coli

Shigella

Clostridium difficile


Salmonella

Parasites

Viruses

Dysbiosis:

- ↓ microbial diversity
- ↓ beneficial bacteria
- ↓ Firmicutes (*Clostridium* clusters III, IV and XIVa)
- ↑ Bacteroidetes

Post-infectious IBS

Recovery

RESEARCH HIGHLIGHTS

Understanding the immune drivers of food-induced abdominal pain

After clearance of the infection, repeated exposure to ovalbumin resulted in diarrhoea and gut pain in the mice

A new paper published in *Nature* explores the underlying mechanisms and links between infection, irritable bowel syndrome (IBS) symptoms and food intake. The research reveals that bacterial gastrointestinal infection can trigger a break in oral tolerance and localized immune responses that react to food antigens, leading to meal-induced abdominal pain.

IBS can develop after gastrointestinal infection, and individuals with IBS often report symptoms (including abdominal pain) after food ingestion. Previous work had linked histamine release as a result of mast cell activation to hyper-responsiveness to TRP agonists and increased pain responses in patients with IBS. “We reasoned that during an

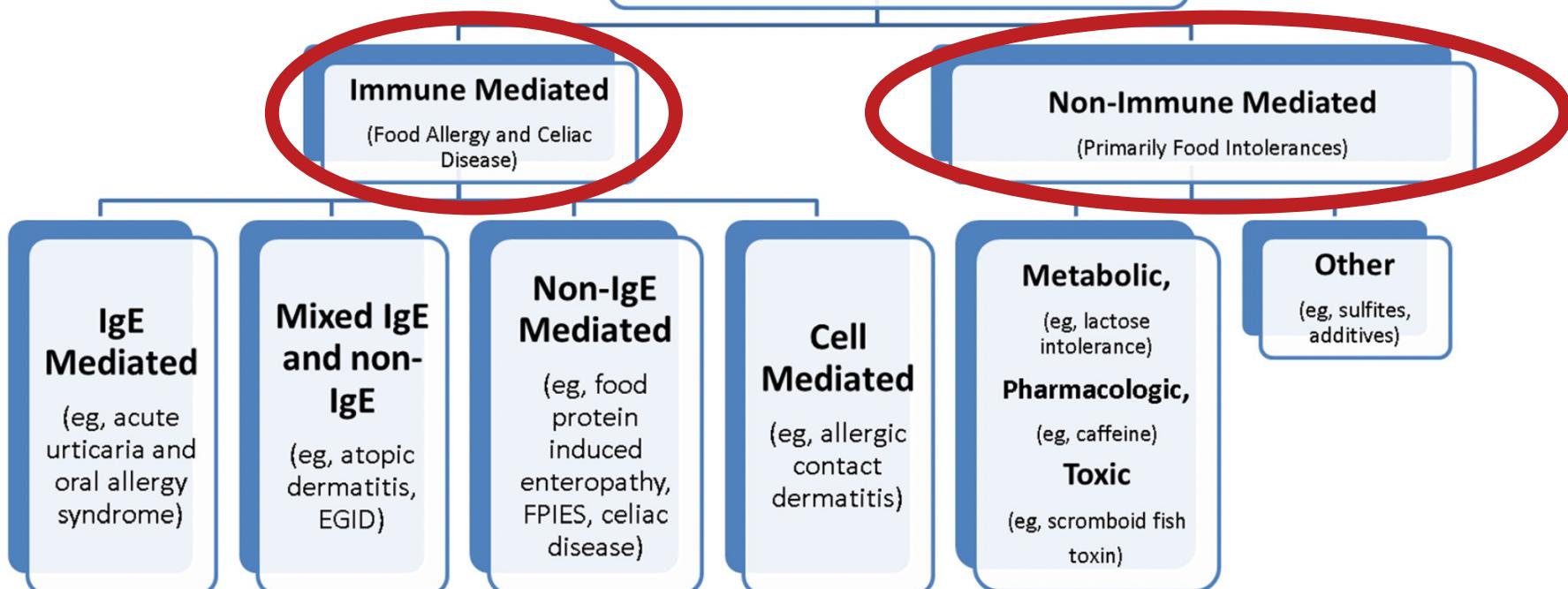
After clearance of the infection, repeated exposure to ovalbumin resulted in diarrhoea and gut pain in the mice. This bacterial infection led to a local immune response that was limited to the intestine in the mice, with the production of dietary antigen-specific IgE antibodies. Moreover, re-exposure to ovalbumin after infection induced increased visceral hypersensitivity (increased pain responses to colorectal distension). This visceral hypersensitivity was associated with increased mucosal permeability and was dependent on IgE production and mast cell activation (increased mast cell degranulation and histamine release). Notably, the development of increased dietary antigen-specific visceral

individuals as controls. Importantly, none of the study participants were allergic to these antigens (as confirmed by allergy testing, including skin prick testing and checking IgE antibodies in serum). All 12 patients with IBS had mucosal reactions to at least one of the food antigens tested, compared with only two of the healthy individuals. Moreover, food antigens induced local mucosal oedema and mast cell activation in patients with IBS. Although there was no difference in total number of mast cells or IgE⁺ mast cells between patients with IBS and healthy individuals, those with IBS had more IgE⁺ mast cells in close proximity to nerve fibres. The distance between IgE⁺ mast cells and nerve fibres was

A new paper published in *Nature* explores the underlying mechanisms and links between infection, irritable bowel syndrome (IBS) symptoms and food intake. The research reveals that bacterial gastrointestinal infection can trigger a break in oral tolerance and localized immune responses that react to food antigens, leading to meal-induced abdominal pain.

After an infection, the immune system reacts by mounting an inflammatory response. This can lead to symptoms such as abdominal pain, diarrhoea and constipation.

“We have now shown that during an infection, the immune system reacts by mounting an inflammatory response. This can lead to symptoms such as abdominal pain, diarrhoea and constipation.


had linked histamine release as a result of mast cell activation to hyper-responsiveness to TRP agonists and increased pain responses in patients with IBS.

“We have now shown that during an infection, the immune system reacts by mounting an inflammatory response. This can lead to symptoms such as abdominal pain, diarrhoea and constipation.

and was dependent on IgE production and mast cell activation (increased mast cell degranulation and histamine release). Notably, the development of increased dietary antigen-specific intestinal

IgE⁺ mast cells between patients with IBS and healthy individuals, those with IBS had more IgE⁺ mast cells in close proximity to nerve fibres. The distance between IgE⁺ mast cells and nerve fibres

Adverse Food Reactions

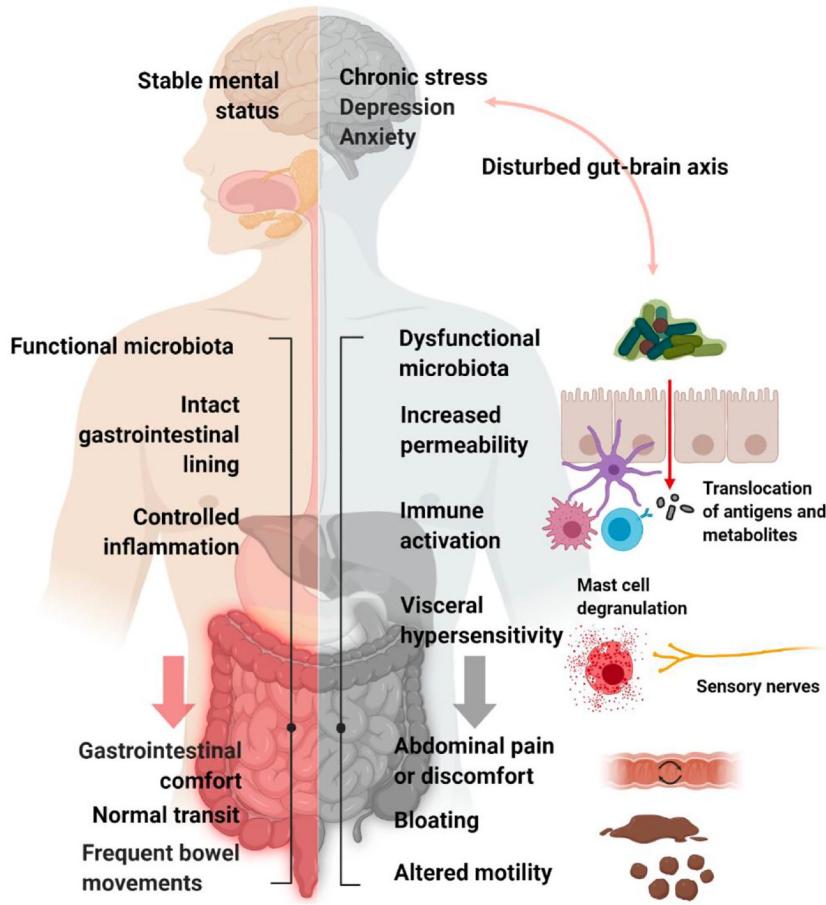
> *Dig Dis Sci.* 2020 Feb;65(2):534-540. doi: 10.1007/s10620-019-05780-7. Epub 2019 Sep 6.

Sucrase-Isomaltase Deficiency as a Potential Masquerader in Irritable Bowel Syndrome

“SID [sucrase-isomaltase deficiency] was found in **35% of patients with presumed IBS-D/M** and should be considered in the differential diagnosis of patients presenting with abdominal pain, diarrhea, or bloating.”

Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis

Caterina Carco ^{1,2,3,4}, Wayne Young ^{2,3,4}, Richard B. Gearry ^{4,5}, Nicholas J. Talley ⁶, Warren C. McNabb ^{2,4} and Nicole C. Roy ^{2,4,7,8*}


¹ School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand, ² Riddet Institute, Massey University, Palmerston North, New Zealand, ³ Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand, ⁴ The High-Value Nutrition National Science Challenge, Auckland, New Zealand, ⁵ Department of Medicine, University of Otago, Christchurch, New Zealand, ⁶ Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia, ⁷ Liggins Institute, University of Auckland, Auckland, New Zealand, ⁸ Department of Human Nutrition, University of Otago, Dunedin, New Zealand

The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens.

OPEN ACCESS

Edited by:

FIGURE 1 | Schematic representation of IBS pathophysiology.

Functional microbiota

Intact
gastrointestinal
lining

Controlled
inflammation

Gastrointestinal
comfort

Normal transit

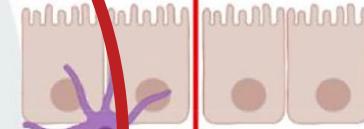
Frequent bowel
movements

Dysfunctional microbiota

Increased
permeability

Immune
activation

Visceral
hypersensitivity


Mast cell
degranulation

Sensory nerves


Abdominal pain
or discomfort

Bloating

Altered motility

IBS – Key Pathophysiological Mechanisms

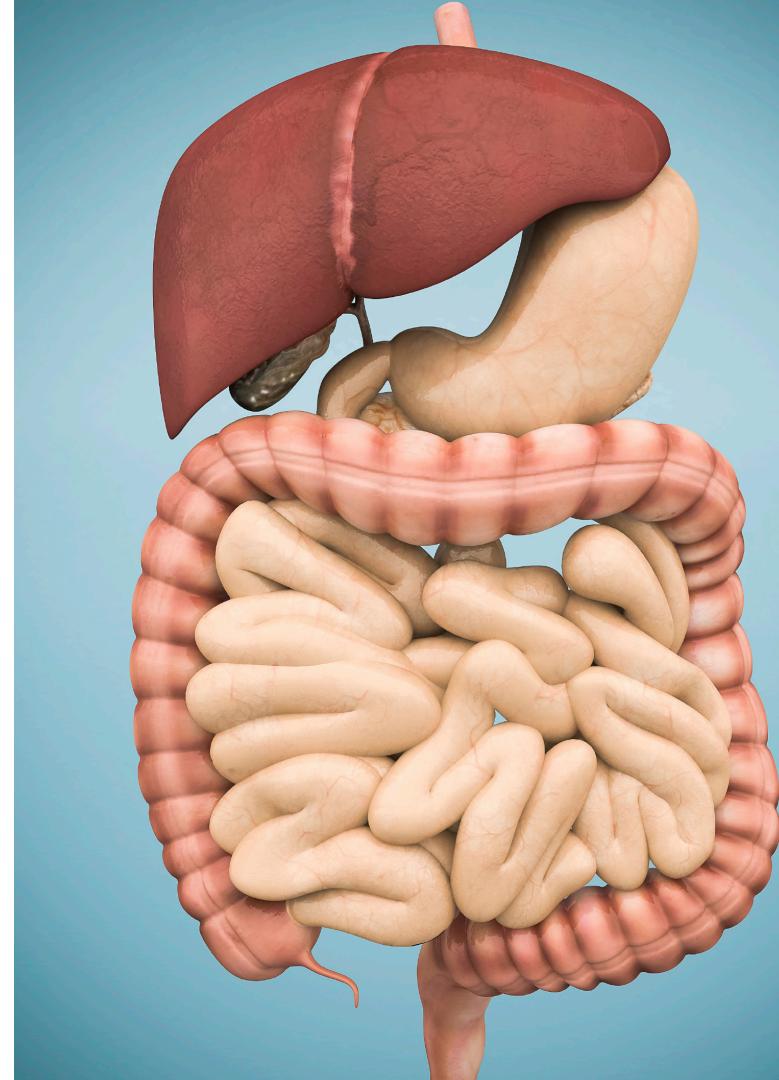
-
- ***Microbial involvement:*** infections and dysbiosis, including specific microbes & their products
 - ***Immune activation:*** mast cells, eosinophils, etc. induced by foods and/or microbes
 - ***Visceral hypersensitivity & altered motility:*** induced by microbial products and/or immune activation
 - ***Intestinal barrier dysfunction:*** caused by dysbiosis and immune activation

Microbes Implicated in IBS Pathophysiology

Klebsiella spp.

Staphylococcus aureus

Escherichia coli


Pseudomonas aeruginosa

Enterococcus spp.

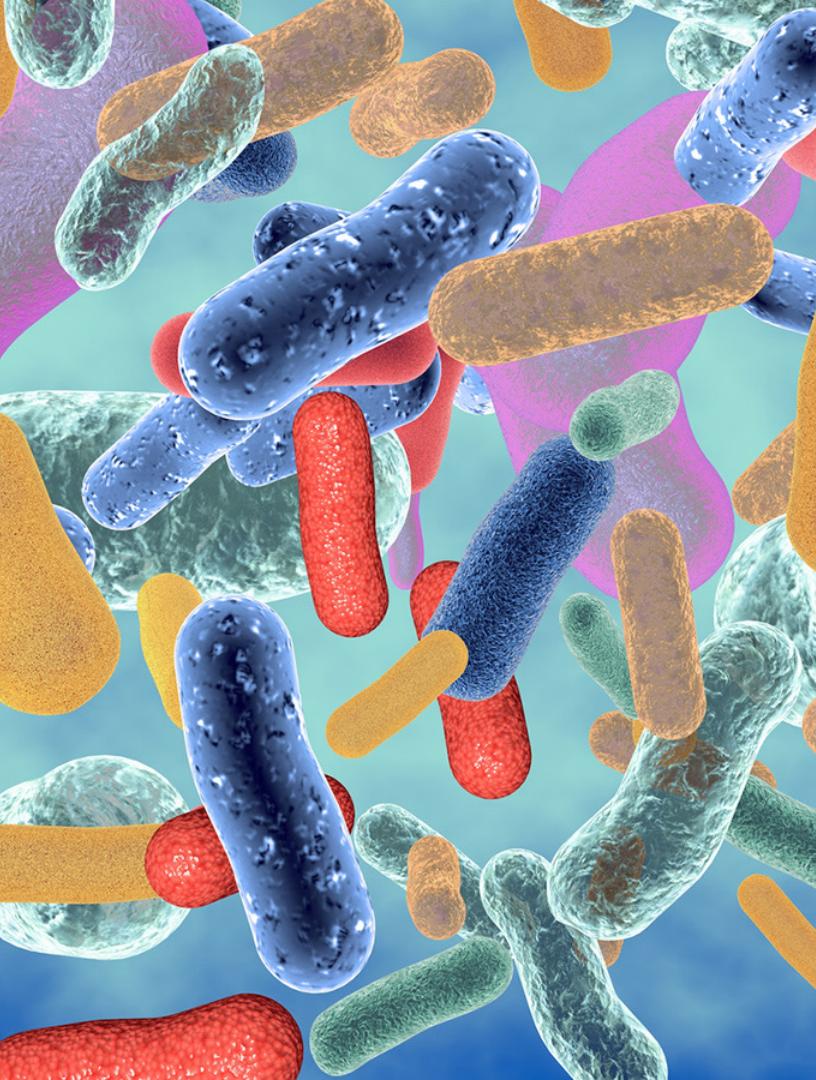
Streptococcus spp.

Firmicutes (H_2)

Methanobacteriaceae (CH_4)

Influence of abnormal bacterial flora on small intestinal function

Table 2
**Percentage incidence of different types
of organism cultures from jejunal fluid**


<i>Organism</i>	<i>Percentage incidence</i>
<i>E. coli</i>	72
<i>Strep. faecalis</i>	20
<i>Proteus</i>	10
<i>Klebsiella</i>	8
<i>Strep. viridans</i>	12
Bacteroides and lactobacilli	8
<i>α-hæmolytic streptococci</i> paracolon	4

Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome

Table 1. Prevalence of the Main Bacterial Genus Isolated From 55 SIBOS Patients

Bacteria	No. of Viable Organisms (mean \pm log CFU/ml)	Prevalence (%)
Microaerophilic	7.4 \pm 0.9	100
<i>Streptococcus</i>	6.2 \pm 0.8	71
<i>Staphylococcus</i>	6.2 \pm 0.6	25
<i>Micrococcus</i>	6.0 \pm 0.7	22
<i>Escherichia coli</i>	7.2 \pm 0.9	69
<i>Klebsiella</i>	7.1 \pm 0.8	20
<i>Proteus</i>	6.1 \pm 0.8	11
<i>Acinetobacter</i>	8.0 \pm 2.2	9
<i>Enterobacter</i>	7.3 \pm 0.2	7
<i>Neisseiria</i>	6.5 \pm 0.4	16

Microbial Products Implicated in IBS Pathophysiology

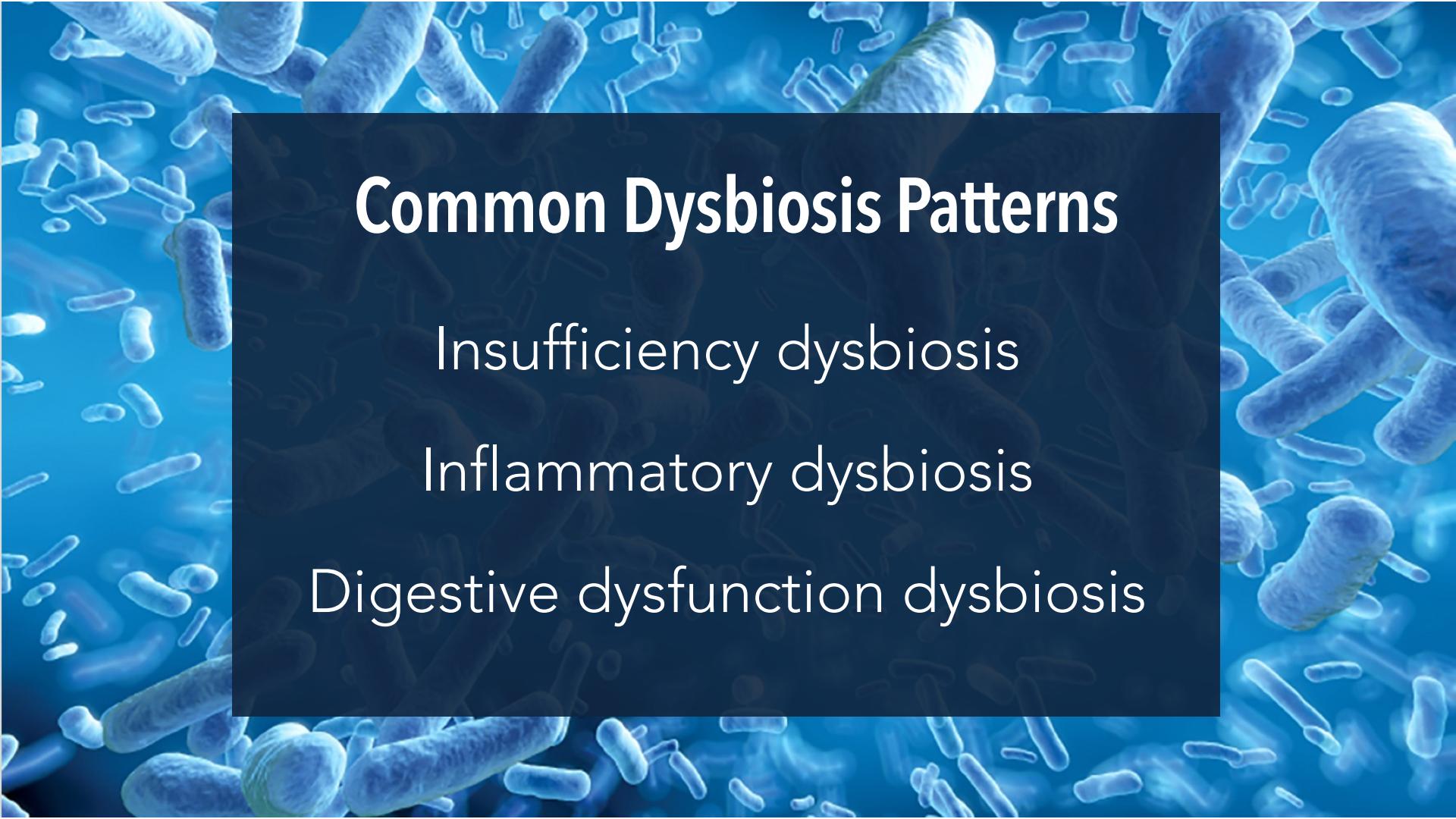
Histamine

Serotonin

Tryptamine

Lipopolysaccharide (LPS)

Bile acids


Short-chain fatty acids

Enzymes (proteases, etc.)

Gases (H_2 , CH_4 , H_2S)

Microbial ecosystem
GI physiology

A background image showing numerous blue, rod-shaped bacteria cells against a dark blue background.

Common Dysbiosis Patterns

Insufficiency dysbiosis

Inflammatory dysbiosis

Digestive dysfunction dysbiosis

GI-MAP PATTERNS

UNDERSTANDING COMMON DYSBIOSIS PATTERNS WITH GI-MAP

INSUFFICIENCY DYSBIOSIS

Insufficiency dysbiosis is characterized by low levels of beneficial bacteria that provide critical support for healthy intestinal and immune function. Insufficient levels of beneficial bacteria may result in an elevated risk of intestinal infections, increased intestinal barrier permeability, decreased protective factors such as secretory IgA, and increased inflammation. Lack of keystone bacteria is common in autoimmune, allergic, and chronic inflammatory conditions.

Table 9.

Markers Characterizing Insufficiency Dysbiosis

Bacteroides fragilis
Bifidobacterium spp.
Enterococcus spp.

Gut Barrier Permeability ("Leaky Gut") Pattern

Intestinal Permeability	Any Pathogen	High	<i>Pathogens (page 1)</i>
	<i>Lactobacillus</i> spp.	Low	<i>Normal Flora (page 2)</i>
	<i>Akkermansia muciniphila</i>	Low; <dl	
	<i>Candida albicans</i>	High	<i>Fungi/Yeast (page 3)</i>
	Anti-gliadin IgA	High	<i>Intestinal Health Markers (Page 4)</i>
	Zonulin	High	
Low Butyrate/SCFA Production	<i>Clostridia</i> (class)	Low; <dl	<i>Normal Flora (page 2)</i>
	<i>Faecalibacterium prausnitzii</i>	Low	
	<i>Firmicutes</i> phylum	Low	
Poor Mucosal Health	<i>Bifidobacterium</i> spp.	Low; <dl	<i>Normal Flora (page 2)</i>
	<i>Escherichia</i> spp.	Low	
	<i>Lactobacillus</i> spp.	Low	
	<i>Akkermansia muciniphila</i>	Low; <dl	
	<i>Bacteroidetes</i> phylum	Low	

GI-MAP® Advanced Practice Series

Advanced Intestinal Barrier Assessment

Presented by Thomas Fabian, PhD, CNTP

Functional Groups

Short-chain fatty acids

Gases (H_2 , methane, H_2S)

LPS, histamine

Mast cell-activating microbes

Microbe Categories and GI-MAP® Patterns Associated with IBS & SIBO

Primary Hydrogen Producers

Faecalibacterium prausnitzii
Roseburia spp.
Bacteroidetes phyla
Firmicutes phyla

Primary Methane Producers

Methanobacteriaceae (family)

Primary Hydrogen Sulfide Producers

Bacteroides fragilis
Escherichia spp.
Enterobacter spp.
Desulfovibrio spp.
Morganella spp.
Pseudomonas aeruginosa
Staphylococcus aureus
Citrobacter spp.
Citrobacter freundii
Klebsiella spp.
Klebsiella pneumoniae
Proteus spp.
Proteus mirabilis
Fusobacterium spp.

Histamine Producing Bacteria

Lactobacillus spp.
Morganella spp.
Pseudomonas

Mast Cell-Activating Microbes

H. pylori
Enterococcus faecalis
Pseudomonas aeruginosa
Staphylococcus aureus
Streptococcus spp.
Candida spp.
Candida albicans
Lipopolysaccharide producers (see LPS list)

Lipopolysaccharide (LPS) Producing Bacteria

Escherichia spp.
Enterobacter spp.
Morganella spp.
Pseudomonas spp.
Pseudomonas aeruginosa
Citrobacter spp.
Citrobacter freundii
Klebsiella spp.
Klebsiella pneumoniae
Proteus
Proteus mirabilis

Review

> Am J Gastroenterol. 2022 Jun 1;117(6):937-946.

doi: 10.14309/ajg.0000000000001812. Epub 2022 May 4.

Mechanisms Underlying Food-Triggered Symptoms in Disorders of Gut-Brain Interactions

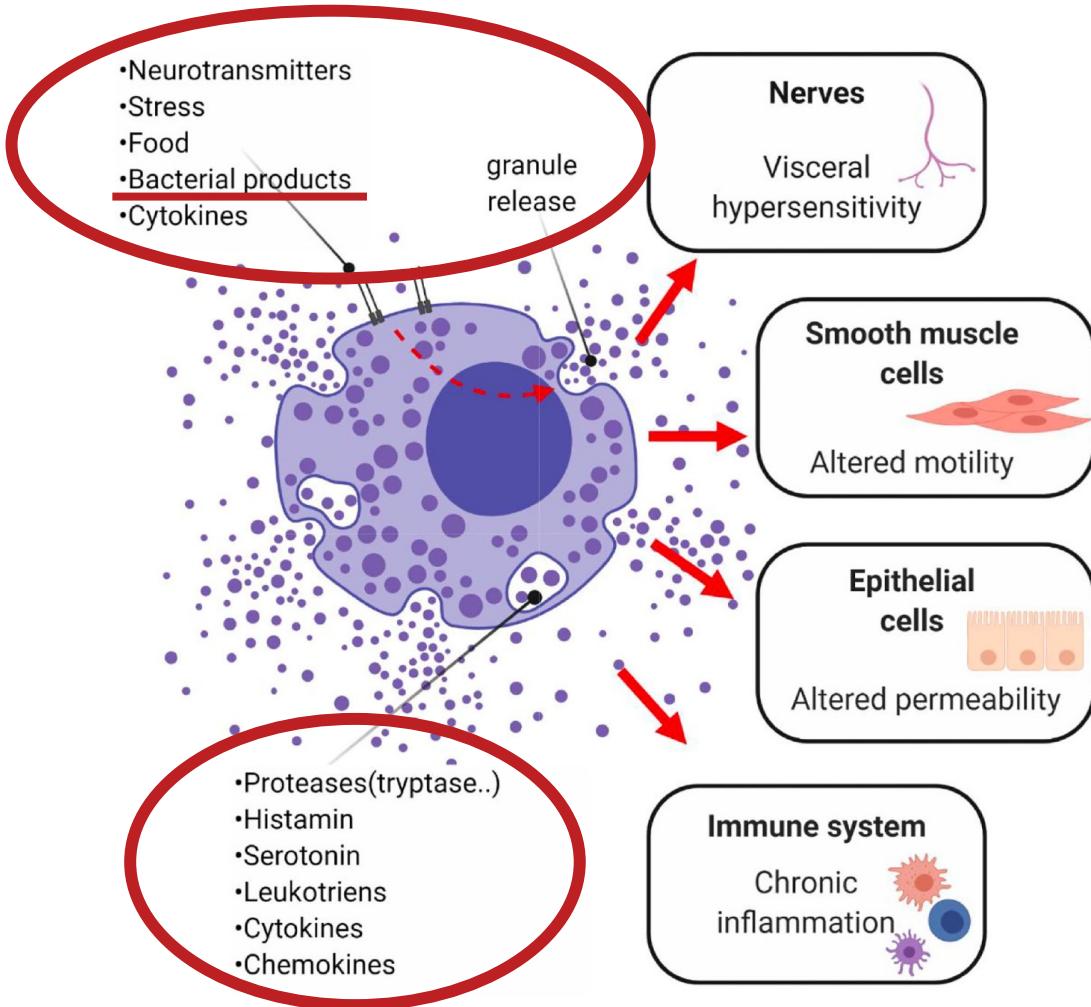
“Diet-microbiota interactions are a critical source of neuroactive mediators that significantly modulate intestinal nociceptive signaling and **cause visceral hypersensitivity**. Multiple bacterial mediators have been implicated, including **histamine, proteases, tryptamine, 5-HT [serotonin], and lipopolysaccharide**.”

Review

> Gut. 2022 Sep 28;gutjnl-2022-328166. doi: 10.1136/gutjnl-2022-328166.

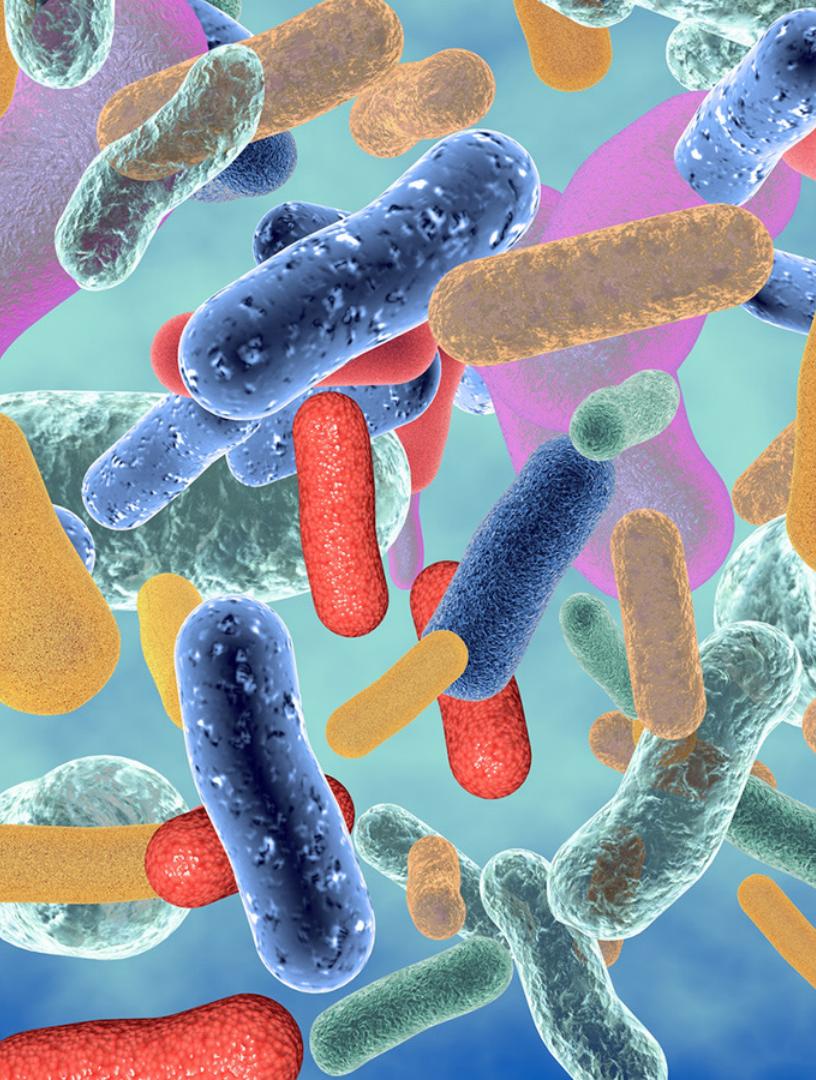
Online ahead of print.

Advancing human gut microbiota research by considering gut transit time


“The gut microbiota produces metabolites such as short-chain fatty acids (SCFA), secondary bile acids, tryptamine, histamine, H₂ or CH₄.

These microbial-derived metabolites can influence gastrointestinal motility and thereby impact gut transit time.”

Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles


Microbes that can stimulate mast cell responses:

- *Staphylococcus aureus*
- *Streptococcus* spp.
- *Pseudomonas aeruginosa*
- *Enterococcus faecalis*
- *Candida*
- *H. pylori*
- *Klebsiella* & other LPS and histamine producers

Case Example

Case Example

59 y/o female

Dx with IBS-C

Lower abdominal pain,
especially with fatty foods

BACTERIAL PATHOGENS	Result	Reference
<i>Campylobacter</i>	<dl	< 1.00e3
<i>C. difficile</i> Toxin A	<dl	< 1.00e3
<i>C. difficile</i> Toxin B	<dl	< 1.00e3
<i>Enterohemorrhagic E. coli</i>	<dl	< 1.00e3
<i>E. coli</i> O157	<dl	< 1.00e3
Enteroinvasive <i>E. coli/Shigella</i>	<dl	< 1.00e3
Enterotoxigenic <i>E. coli</i> LT/ST	<dl	< 1.00e3
Shiga-like Toxin <i>E. coli</i> stx1	<dl	< 1.00e3
Shiga-like Toxin <i>E. coli</i> stx2	<dl	< 1.00e3
<i>Salmonella</i>	<dl	< 1.00e4
<i>Vibrio cholerae</i>	<dl	< 1.00e5
<i>Yersinia enterocolitica</i>	<dl	< 1.00e5
PARASITIC PATHOGENS		
<i>Cryptosporidium</i>	<dl	< 1.00e6
<i>Entamoeba histolytica</i>	<dl	< 1.00e4
<i>Giardia</i>	<dl	< 5.00e3
VIRAL PATHOGENS		
Adenovirus 40/41	<dl	< 1.00e10
Norovirus GI/II	<dl	< 1.00e7

HELICOBACTER PYLORI

H. PYLORI & VIRULENCE FACTORS	Result	Reference
<i>Helicobacter pylori</i>	1.33e2	< 1.00e3
Virulence Factor, babA	N/A	Negative
Virulence Factor, cagA	N/A	Negative
Virulence Factor, dupA	N/A	Negative
Virulence Factor, iceA	N/A	Negative
Virulence Factor, oipA	N/A	Negative
Virulence Factor, vacA	N/A	Negative
Virulence Factor, virB	N/A	Negative
Virulence Factor, virD	N/A	Negative

COMMENSAL/KEYSTONE BACTERIA

COMMENSAL BACTERIA	Result	Reference
<i>Bacteroides fragilis</i>	3.48e9	1.6e9 - 2.5e11
<i>Bifidobacterium</i> spp.	4.36e9	> 6.7e7
<i>Enterococcus</i> spp.	2.43e5	1.9e5 - 2.0e8
<i>Escherichia</i> spp.	3.15e5 L	3.7e6 - 3.8e9
<i>Lactobacillus</i> spp.	2.47e6	8.6e5 - 6.2e8
<i>Enterobacter</i> spp.	1.53e6	1.0e6 - 5.0e7
<i>Akkermansia muciniphila</i>	<dl L	1.0e1 - 8.2e6
<i>Faecalibacterium prausnitzii</i>	9.80e6	1.0e3 - 5.0e8
<i>Roseburia</i> spp.	3.98e7 L	5.0e7 - 2.0e10
BACTERIAL PHYLA		
<i>Bacteroidetes</i>	3.05e11 L	8.6e11 - 3.3e12
<i>Firmicutes</i>	3.17e10 L	5.7e10 - 3.0e11
<i>Firmicutes:Bacteroidetes Ratio</i>	0.10	< 1.0

DYSBIOTIC & OVERGROWTH BACTERIA	Result	Reference
<i>Bacillus</i> spp.	1.68e5	< 1.76e6
<i>Enterococcus faecalis</i>	7.42e5 High ↑	< 1.00e4
<i>Enterococcus faecium</i>	2.39e3	< 1.00e4
<i>Morganella</i> spp.	<dl	< 1.00e3
<i>Pseudomonas</i> spp.	4.53e8 High ↑	< 1.00e4
<i>Pseudomonas aeruginosa</i>	9.19e3 High ↑	< 5.00e2
<i>Staphylococcus</i> spp.	<dl	< 1.00e4
<i>Staphylococcus aureus</i>	<dl	< 5.00e2
<i>Streptococcus</i> spp.	4.53e4 High ↑	< 1.00e3
COMMENSAL OVERGROWTH MICROBES		
<i>Desulfovibrio</i> spp.	6.54e5	< 7.98e8
<i>Methanobacteriaceae</i> (family)	2.43e6	< 3.38e8

INFLAMMATORY & AUTOIMMUNE-RELATED BACTERIA

<i>Citrobacter</i> spp.	1.67e4	< 5.00e6
<i>Citrobacter freundii</i>	4.69e5	< 5.00e5
<i>Klebsiella</i> spp.	1.66e5	High ↑
<i>Klebsiella pneumoniae</i>	4.16e5	High ↑
<i>M. avium</i> subsp. <i>paratuberculosis</i>	<dl	< 5.00e3
<i>Proteus</i> spp.	<dl	< 5.00e4
<i>Proteus mirabilis</i>	<dl	< 1.00e3

COMMENSAL INFLAMMATORY & AUTOIMMUNE-RELATED BACTERIA

<i>Enterobacter</i> spp.	1.53e6	< 5.00e7
<i>Escherichia</i> spp.	3.15e5	< 3.80e9
<i>Fusobacterium</i> spp.	3.20e5	< 1.00e8
<i>Prevotella</i> spp.	3.25e6	< 1.00e8

FUNGI/YEAST

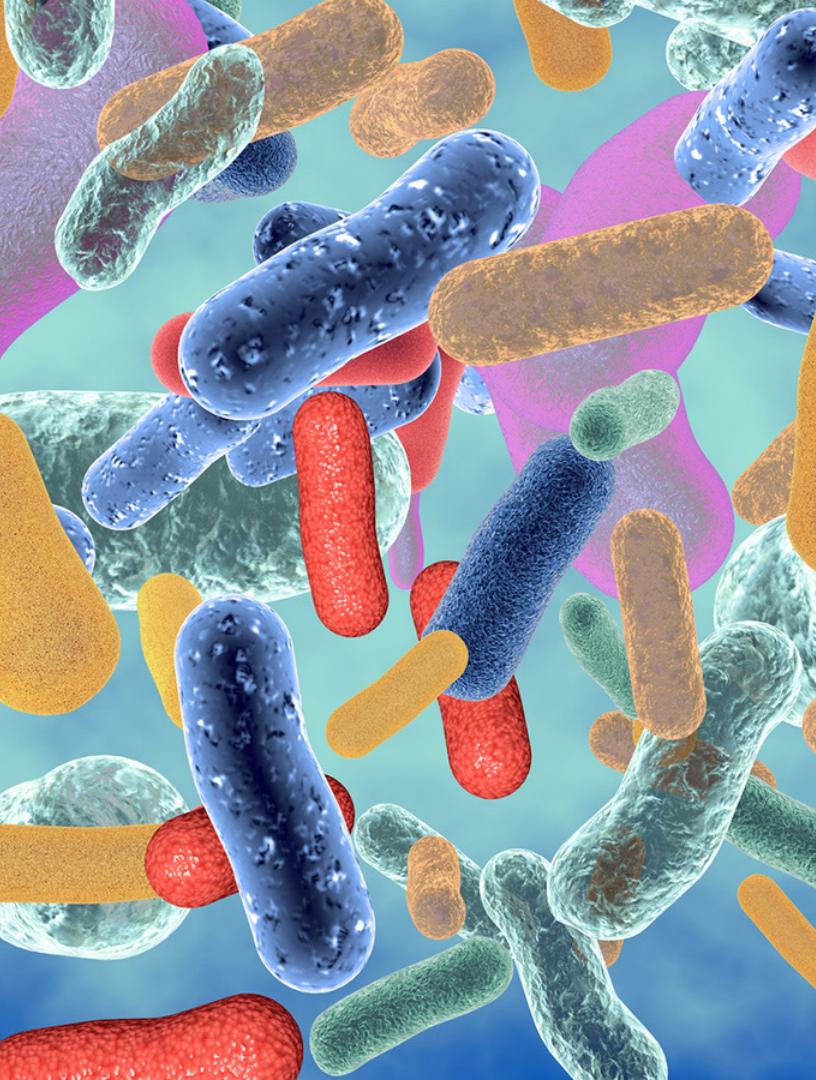
FUNGI/YEAST	Result	Reference
<i>Candida</i> spp.	<dl	< 5.00e3
<i>Candida albicans</i>	<dl	< 5.00e2
<i>Geotrichum</i> spp.	<dl	< 3.00e2
<i>Microsporidium</i> spp.	<dl	< 5.00e3
<i>Rhodotorula</i> spp.	<dl	< 1.00e3

VIRUSES

VIRUSES	Result	Reference
Cytomegalovirus	<dl	< 1.00e5
Epstein-Barr Virus	<dl	< 1.00e7

PARASITES

PROTOZOA

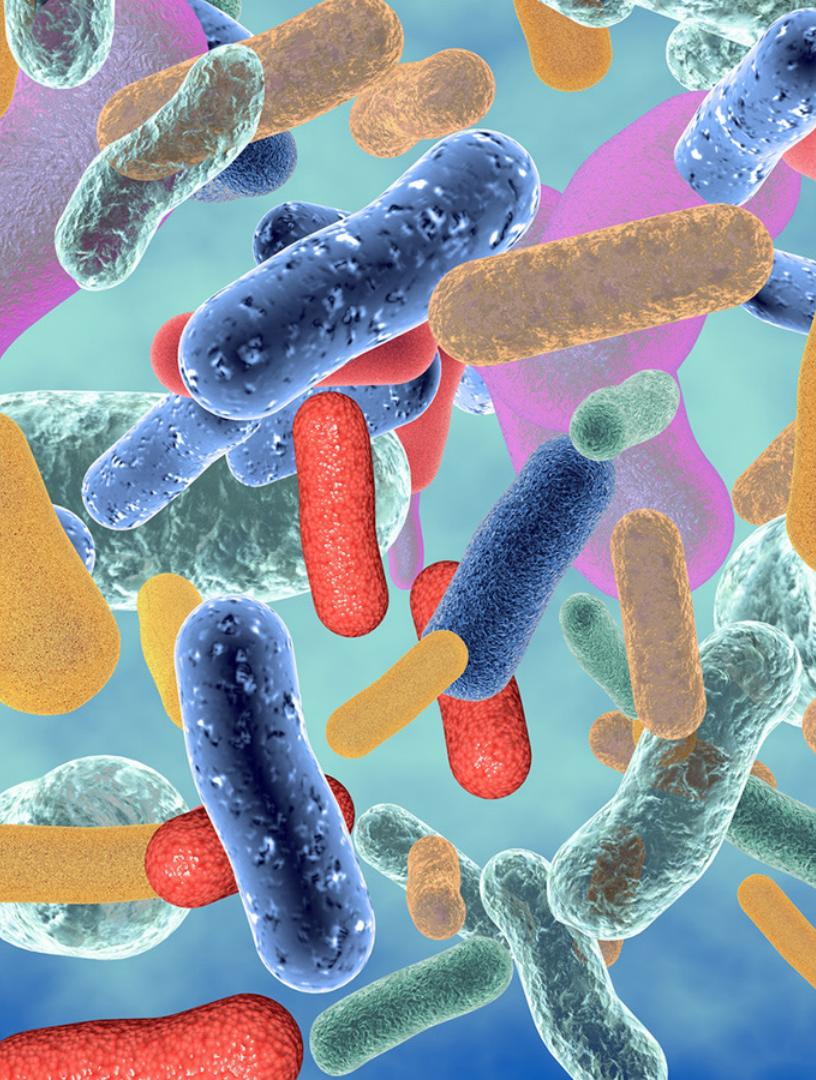

	Result	Reference
<i>Blastocystis hominis</i>	<dl	< 2.00e3
<i>Chilomastix mesnili</i>	<dl	< 1.00e5
<i>Cyclospora</i> spp.	<dl	< 5.00e4
<i>Dientamoeba fragilis</i>	<dl	< 1.00e5
<i>Endolimax nana</i>	<dl	< 1.00e4
<i>Entamoeba coli</i>	<dl	< 5.00e6
<i>Pentatrichomonas hominis</i>	<dl	< 1.00e2

WORMS

<i>Ancylostoma duodenale</i>	Not Detected	Not Detected
<i>Ascaris lumbricoides</i>	Not Detected	Not Detected
<i>Necator americanus</i>	Not Detected	Not Detected
<i>Trichuris trichiura</i>	Not Detected	Not Detected
<i>Taenia</i> spp.	Not Detected	Not Detected

INTESTINAL HEALTH MARKERS

DIGESTION	Result	Reference
Steatocrit	8	< 15 %
Elastase-1	601	> 200 ug/g
GI MARKERS		
β-Glucuronidase	883	< 2486 U/mL
Occult Blood - FIT	<dl	< 10 ug/g
IMMUNE RESPONSE		
Secretory IgA	439 L	510 - 2010 ug/g
Anti-gliadin IgA	133	< 175 U/L
Eosinophil Activation Protein (EDN, EPX)	0.94	< 2.34 ug/g
INFLAMMATION		
Calprotectin	26	< 173 ug/g

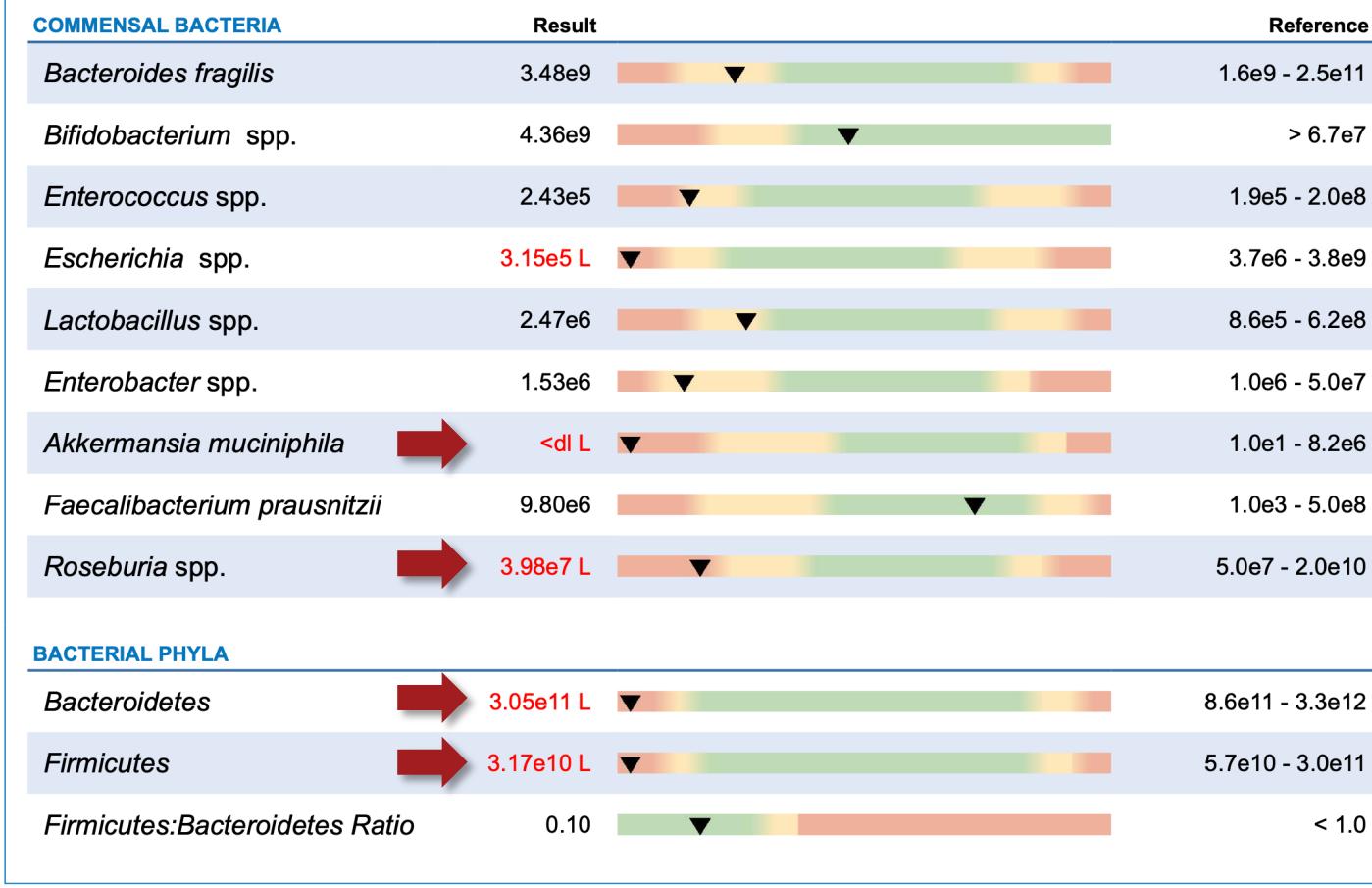

Case Summary

Low commensal & keystone species

Opportunistic overgrowth,
including *Klebsiella* and
Pseudomonas

Low secretory IgA,
elevated steatocrit

DYSBIOTIC & OVERGROWTH BACTERIA	Result	Reference
<i>Bacillus</i> spp.	1.68e5	< 1.76e6
<i>Enterococcus faecalis</i>	7.42e5 High ↑	< 1.00e4
<i>Enterococcus faecium</i>	2.39e3	< 1.00e4
<i>Morganella</i> spp.	<dl	< 1.00e3
<i>Pseudomonas</i> spp.	4.53e8 High ↑	< 1.00e4
<i>Pseudomonas aeruginosa</i>	9.19e3 High ↑	< 5.00e2
<i>Staphylococcus</i> spp.	<dl	< 1.00e4
<i>Staphylococcus aureus</i>	<dl	< 5.00e2
<i>Streptococcus</i> spp.	4.53e4 High ↑	< 1.00e3
COMMENSAL OVERGROWTH MICROBES		
<i>Desulfovibrio</i> spp.	6.54e5	< 7.98e8
<i>Methanobacteriaceae</i> (family)	→ 2.43e6	< 3.38e8


Case Summary

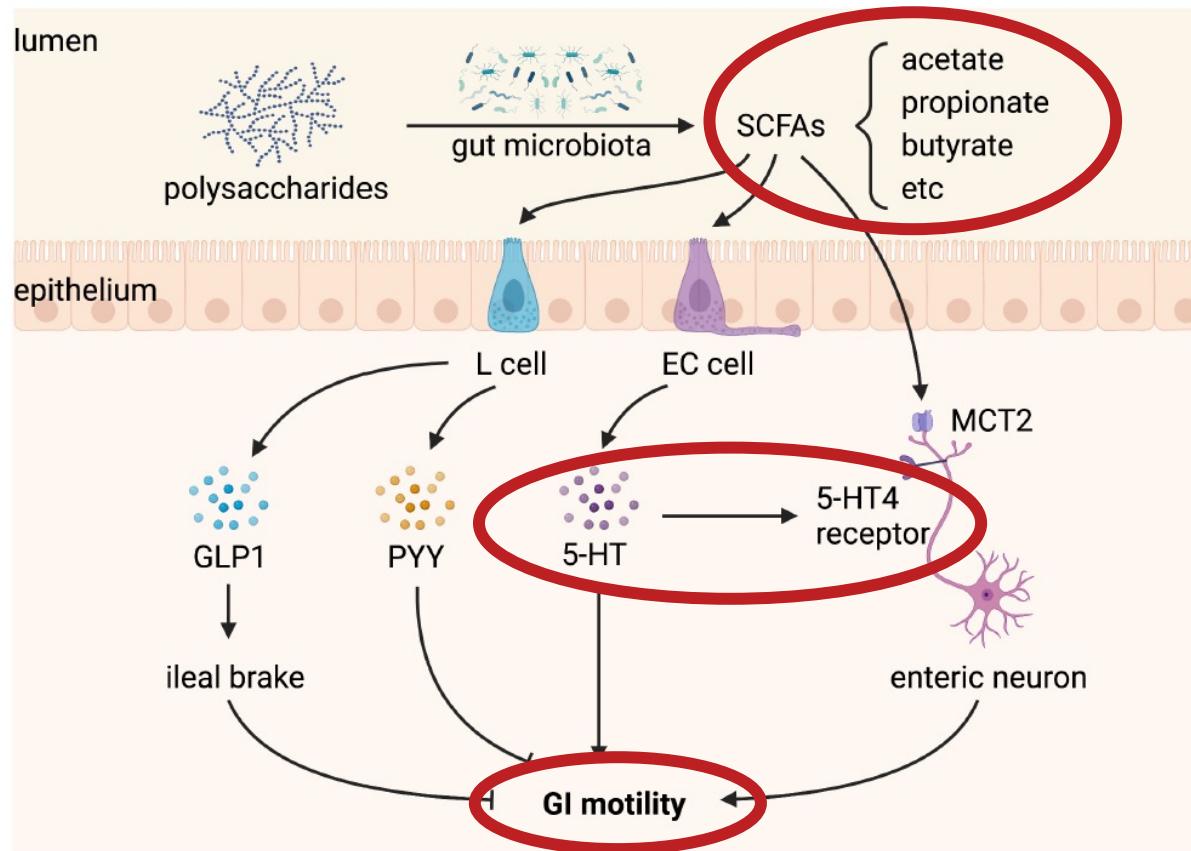
→ Low commensal & keystone species

Opportunistic overgrowth,
including *Klebsiella* and
Pseudomonas

Low secretory IgA,
elevated steatocrit

COMMENSAL/KEYSTONE BACTERIA

Online ahead of print.


Advancing human gut microbiota research by considering gut transit time

“The gut microbiota produces metabolites such as short-chain fatty acids (SCFA), secondary bile acids, tryptamine, histamine, H_2 or CH_4 .

These microbial-derived metabolites can influence gastrointestinal motility and thereby impact gut transit time.”

FIGURE 5

Short-chain fatty acids (SCFAs) produced by gut microbiota regulate gastrointestinal (GI) motility.

Received: 8 October 2019 | Revised: 24 January 2020 | Accepted: 6 February 2020

DOI: 10.1111/all.14254

ORIGINAL ARTICLE

Basic and Translational Allergy Immunology

Allergy EUROPEAN JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY EAACI

WILEY

Butyrate inhibits human mast cell activation via epigenetic regulation of Fc ϵ RI-mediated signaling

Jelle Folkerts^{1,2,3,4} | Frank Redegeld¹ | Gert Folkerts¹ | Bart Blokhuis¹ |
Mariska P. M. van den Berg⁵ | Marjolein J. W. de Brujin² | Wilfred F. J. van IJcken⁶ |
Tobias Junt⁷ | See-Ying Tam³ | Stephen J. Galli^{3,8} | Rudi W. Hendriks² |
Ralph Stadhouders^{2,9} | Marcus Maurer⁴

¹Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands

²Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands

³Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

⁴Dermatological Allergology, Dermatology and Allergy, Charité – Universitätsmedizin Berlin, Berlin, Germany

⁵Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The

Abstract

Background: Short-chain fatty acids (SCFAs) are fermented dietary components that regulate immune responses, promote colonic health, and suppress mast cell-mediated diseases. However, the effects of SCFAs on human mast cell function, including the underlying mechanisms, remain unclear. Here, we investigated the effects of the SCFAs (acetate, propionate, and butyrate) on mast cell-mediated pathology and human mast cell activation, including the molecular mechanisms involved.

Method: Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used to assess the effects of butyrate on allergic airway contraction. Human and mouse mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or non-IgE-mediated stimulation. The underlying mechanisms involved were investigated using a combination of cell-free and cell-based assays, including Western blotting, immunoprecipitation, and mass spectrometry.

COMMENSAL/KEYSTONE BACTERIA

COMMENSAL BACTERIA	Result	Reference
<i>Bacteroides fragilis</i>	3.48e9	1.6e9 - 2.5e11
<i>Bifidobacterium</i> spp.	4.36e9	> 6.7e7
<i>Enterococcus</i> spp.	2.43e5	1.9e5 - 2.0e8
<i>Escherichia</i> spp.	3.15e5 L	3.7e6 - 3.8e9
<i>Lactobacillus</i> spp.	2.47e6	8.6e5 - 6.2e8
<i>Enterobacter</i> spp.	1.53e6	1.0e6 - 5.0e7
<i>Akkermansia muciniphila</i>	<dl L	1.0e1 - 8.2e6
<i>Faecalibacterium prausnitzii</i>	9.80e6	1.0e3 - 5.0e8
<i>Roseburia</i> spp.	3.98e7 L	5.0e7 - 2.0e10
BACTERIAL PHYLA		
<i>Bacteroidetes</i>	3.05e11 L	8.6e11 - 3.3e12
<i>Firmicutes</i>	3.17e10 L	5.7e10 - 3.0e11
<i>Firmicutes:Bacteroidetes Ratio</i>	0.10	< 1.0

Role of gut microbiota-derived signals in the regulation of gastrointestinal motility

Other specific cell wall components of commensal bacteria can also directly interact with TLR2. *Amuc_1100*, an outer membrane protein of *Akkermansia muciniphila* (*A. muciniphila*), promotes the intestinal biosynthesis of serotonin (5-HT) and further improves the function of GI motility through TLR2 signaling (41). *Clostridium butyricum* (*C. butyricum*), a probiotic strain, increase the secretion of ghrelin and SP and may promote GI motility by inducing the cell viability of ICCs

Enteric Microbiota–Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome

“One of the most important neurotransmitters in the pathology of IBS is serotonin (5-HT), as it influences gastrointestinal motility, pain sensation, mucosal inflammation, immune responses, and brain activity, all of which shape IBS features.”

Case Summary

Low commensal & keystone species

→ Opportunistic overgrowth, including *Klebsiella* and *Pseudomonas*

Low secretory IgA, elevated steatocrit

INFLAMMATORY & AUTOIMMUNE-RELATED BACTERIA

<i>Citrobacter</i> spp.	1.67e4	< 5.00e6
<i>Citrobacter freundii</i>	4.69e5	< 5.00e5
<i>Klebsiella</i> spp.	1.66e5	High ↑
<i>Klebsiella pneumoniae</i>	4.16e5	High ↑
<i>M. avium</i> subsp. <i>paratuberculosis</i>	<dl	< 5.00e3
<i>Proteus</i> spp.	<dl	< 5.00e4
<i>Proteus mirabilis</i>	<dl	< 1.00e3

COMMENSAL INFLAMMATORY & AUTOIMMUNE-RELATED BACTERIA

<i>Enterobacter</i> spp.	1.53e6	< 5.00e7
<i>Escherichia</i> spp.	3.15e5	< 3.80e9
<i>Fusobacterium</i> spp.	3.20e5	< 1.00e8
<i>Prevotella</i> spp.	3.25e6	< 1.00e8

Comment

> *Nat Rev Gastroenterol Hepatol.* 2022 Oct;19(10):623.

doi: 10.1038/s41575-022-00681-z.

Bacterial histamine and abdominal pain in IBS

"Bacterium-produced histamine induces abdominal pain sensitivity via histamine H4 receptor signalling, leading to the **accumulation and activation of mast cells in the colon.**

The study pinpoints ***Klebsiella aerogenes* as a major producer of histamine** and a potential therapeutic target in the management of pain in irritable bowel syndrome (IBS)."

Histamine Intolerance: The Current State of the Art

“Specifically, the Enterobacteriaceae species *Hafnia alvei*, *Morganella morganii* and *Klebsiella pneumoniae* have been identified as some of the most prolific histamine-forming bacteria. “

DYSBIOTIC & OVERGROWTH BACTERIA	Result	Reference
<i>Bacillus</i> spp.	1.68e5	< 1.76e6
<i>Enterococcus faecalis</i>	7.42e5 High ↑	< 1.00e4
<i>Enterococcus faecium</i>	2.39e3	< 1.00e4
<i>Morganella</i> spp.	<dl	< 1.00e3
<i>Pseudomonas</i> spp.	4.53e8 High ↑	< 1.00e4
<i>Pseudomonas aeruginosa</i>	9.19e3 High ↑	< 5.00e2
<i>Staphylococcus</i> spp.	<dl	< 1.00e4
<i>Staphylococcus aureus</i>	<dl	< 5.00e2
<i>Streptococcus</i> spp.	4.53e4 High ↑	< 1.00e3
COMMENSAL OVERGROWTH MICROBES		
<i>Desulfovibrio</i> spp.	6.54e5	< 7.98e8
<i>Methanobacteriaceae</i> (family)	2.43e6	< 3.38e8

Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of *Pseudomonas aeruginosa* in irritable bowel syndrome

Angèle P. M. Kerckhoffs,¹ Kaouther Ben-Amor,² Melvin Samsom,¹ Michel E. van der Rest,³ Joris de Vogel,³ Jan Knol² and Louis M. A. Akkermans¹

Correspondence
Angèle P. M. Kerckhoffs
AngeleKerckhoffs@hotmail.com

¹Gastrointestinal Research Unit, Departments of Gastroenterology and Surgery, University Medical Center Utrecht, Utrecht, The Netherlands

²Danone Research – Centre for Specialised Nutrition, Wageningen, The Netherlands

³BioVisible BV, Groningen, The Netherlands

Intestinal microbiota may play a role in the pathophysiology of irritable bowel syndrome (IBS). In this case-control study, mucosa-associated small intestinal and faecal microbiota of IBS patients and healthy subjects were analysed using molecular-based methods. Duodenal mucosal brush and faecal samples were collected from 37 IBS patients and 20 healthy subjects. The bacterial 16S rRNA gene was amplified and analysed using PCR denaturing gradient gel electrophoresis (DGGE). Pooled average DGGE profiles of all IBS patients and all healthy subjects from both sampling sites were generated and fingerprints of both groups were compared. The DGGE band fragments which were confined to one group were further characterized by sequence analysis. Quantitative real-time PCR (q-PCR) was used to quantify the disease-associated microbiota. Averaged DGGE profiles of both groups were identical for 78.2 % in the small intestinal samples and for 86.25 % in the faecal samples. Cloning and sequencing of the specific bands isolated from small intestinal and faecal DGGE patterns of IBS patients showed that 45.8 % of the clones belonged to the genus *Pseudomonas*, of which *Pseudomonas aeruginosa* was the predominant species. q-PCR analysis revealed higher levels ($P<0.001$) of *P. aeruginosa* in the small intestine of IBS patients ($8.3\% \pm 0.950$) than in the small

› Nat Commun. 2019 Mar 13;10(1):1198. doi: 10.1038/s41467-019-09037-9.

Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2

“These results demonstrate that proteases expressed by opportunistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen.”

Comment

[Immunity](#). 2022 May 10;55(5):824-826. doi: 10.1016/j.immuni.2022.04.011.

Virulence triggered allergies: *Pseudomonas* gets the Las laugh

Justin L McCarville ¹, Janelle S Ayres ²

Affiliations

PMID: 35545032 DOI: [10.1016/j.immuni.2022.04.011](https://doi.org/10.1016/j.immuni.2022.04.011)

Abstract

The mechanisms of how infectious diseases contribute to allergy remain unanswered. In this issue of *Immunity*, Agaronyan et al. (2022) show that *Pseudomonas aeruginosa* drives immune deviation through induction of type 2 immune responses, resulting in niche remodeling that incites allergic responses to innocuous antigens.

Review

> Am J Gastroenterol. 2022 Jun 1;117(6):937-946.

doi: 10.14309/ajg.0000000000001812. Epub 2022 May 4.

Mechanisms Underlying Food-Triggered Symptoms in Disorders of Gut-Brain Interactions

“Diet-microbiota interactions are a critical source of neuroactive mediators that significantly modulate intestinal nociceptive signaling and **cause visceral hypersensitivity**. Multiple bacterial mediators have been implicated, including **histamine**, **proteases**, **tryptamine**, **5-HT [serotonin]**, and **lipopolysaccharide**.”

DYSBIOTIC & OVERGROWTH BACTERIA	Result	Reference
<i>Bacillus</i> spp.	1.68e5	< 1.76e6
<i>Enterococcus faecalis</i>	7.42e5	High ↑
<i>Enterococcus faecium</i>	2.39e3	< 1.00e4
<i>Morganella</i> spp.	<dl	< 1.00e3
<i>Pseudomonas</i> spp.	4.53e8	High ↑
<i>Pseudomonas aeruginosa</i>	9.19e3	High ↑
<i>Staphylococcus</i> spp.	<dl	< 1.00e4
<i>Staphylococcus aureus</i>	<dl	< 5.00e2
<i>Streptococcus</i> spp.	4.53e4	High ↑
COMMENSAL OVERGROWTH MICROBES		
<i>Desulfovibrio</i> spp.	6.54e5	< 7.98e8
<i>Methanobacteriaceae</i> (family)	2.43e6	< 3.38e8

Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles

Microbes that can stimulate mast cell responses:

- *Staphylococcus aureus*
- ➔ • *Streptococcus* spp.
- ➔ • *Pseudomonas aeruginosa*
- ➔ • *Enterococcus faecalis*
- *Candida*
- *H. pylori*
- ➔ • *Klebsiella* & other LPS and histamine producers

Case Example: Treatment Options

1. Increase beneficial commensals with fiber, polyphenols, probiotics, butyrate
2. Consider antimicrobial herbs for dysbiotic overgrowth bacteria (especially Morganella & Klebsiella). Standard herbal formulas tend to work well.
3. Consider possible role for hypochlorhydria (common cause of opportunistic overgrowth) & low bile production, and supplement accordingly
4. Increase sIgA by supporting commensals, supplementing with *S. boulardii*, glutamine, immunoglobulins (colostrum or non-dairy serum bovine)

Microbial ecosystem
GI physiology